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 PROARTIS FP7 Project (2010-2013)
◦ Coordinator: Francisco J. Cazorla (BSC)
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 Airbus: Benoît Triquet, Franck Wartel

 Disclaimer
◦ This work is the outcome of the effort of all the partners in 

the project
 Not just the BSC effort
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CRTES: Requirements (I)

 Used in Space, Aerospace, Automotive industries 
(among others)

 Market for CRTES is experiencing an 
unprecedented growth

 Require guarantees on their time and functional 
behaviour
◦ Most critical ones require strong arguments
◦ Timing correctness
 WCET Analysis
 Schedulability Analysis



Lines of Code in Typical GM Car
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CRTES: Requirements (II)

 CRTEs require more computational power
◦ More and more functions required
◦ Functions are becoming more complex

 Within bounded development and production costs

Code Size for Airbus Aircrafts
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Growth in Code Size for Manned and Unmanned Missions
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1969 Mariner-6 (30)
1975 Viking (5K)
1977 Voyager (3K)
1989 Galileo (8K)
1990 Cassini (120K)
1997 Pathfinder (175K)
1999 DS1 (349K)
2003 SIRTF/Spitzer (554K)
2004 MER (555K)
2005 MRO (545K)

1968 Apollo (8.5K)
1980 Shuttle(470K)
1989 ISS (1.5M)



 Motivation
◦ Requirements of current/future CRTEs

 Timing Analysis
◦ Limitations of current approaches
◦ Dependence on Execution History

 Feasibility of the probabilistic approach
◦ Illustrative example

 Conclusions

Overview



SoA Timing Analysis approaches
 Ascertain the timing behaviour of CRTEs
◦ static timing analysis (STA) and 
◦ measurement-based (MBTA) techniques

 Adoption of complex hardware (multi-cores, caches, etc.) for 
higher performance
◦ Exacerbates some of the intrinsic limitations of these techniques

 Effort of acquiring: 
◦ (1) Detailed information on the hardware to develop an accurate 

model of its execution latency
◦ (2) Knowledge of the timing behaviour of the program in the 

presence of hardware conditions sensitive to the history of  
previous execution



Execution history
 Current architectures exploit execution history to improve 

performance
◦ Caches are the epitome of that idea
 Temporal and spatial locality

 The average execution time and WCET of programs heavily 
depend on execution history

 Gathering such information is complex and costly
◦ E.g. cache analysis:
 Determine whether a memory access will be a hit or a miss 
 Model all possible cache states

 Time composability is killed when timing behaviour
depends on execution history
◦ Slight modifications in one of the programs implies reanalysing 

the timing of the whole system



Static Timing Analysis
 Requires exhaustive knowledge of all factors that 

determine the execution history of the program
 Limitations 
◦ Increasingly complex processor architectures 
◦ Intellectual property restrictions 
◦ Incomplete and/or inaccurate documentation

 E.g., errata!!
◦ Program addresses may be unknown at analysis time

 Reduction of available knowledge  degradation 
of the tightness of the WCET 
◦ Unknowns  pessimistic assumptions  higher WCET 

estimation



MBTA
 Relies on extensive testing performed on the real 

system under analysis using stressful tests

 WCET = MOET x by an engineering margin 
◦ Make safety allowances for the unknown 
◦ Based on experience

 Safeness of the engineering margin is extremely 
difficult – if at all possible – to determine, 
◦ System may exhibit discontinuous changes in timing 
◦ E.g. pathological cache access patterns



Summary
 Current analysis techniques are unable to scale up 

to the increasing hardware complexity 
 Significant degradation of the quality of the resulting 

products
◦ Pessimistic WCET
◦ High cost to retrieve information
◦ Minor modifications require reanalysing the whole system



PROARTIS hypothesis
 The knowledge required to perform trustworthy 

analysis can be reduced
◦ Adopting a HW/SW whose execution timing behaviour

eradicates dependence on execution history
 One way to achieve this independence is 
◦ Introducing randomness into the timing behaviour of 

the HW/SW
◦ Coupled with new probabilistic timing analysis

techniques
◦ The functional behaviour is left unchanged



Probabilistic nature of the system
 Physical parts of the system have a probability of failure
◦ E.g., the processor itself has a (low) probability of malfunction

 Timing failures can be considered just another type of 
failure that the system may experience

 The objective of the probabilistic timing analysis is 
◦ Providing safe and tight WCET estimations
◦ Keeping the overall failure rate of the system below the domain 

specific threshold of acceptability



Probabilistic Timing Analysis
 PTA allows cutting the WCET bound tail at the 

level of probability suited for the system (e.g. 10-16)



Clarification
 Note that probability is different from the frequency 

of events

system 1, 4, 5, 2,…

1, 4, 5, 2,…

Probability of 1, 1, 1, 1, 1?

unknown
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Probabilistic Timing Analysis
 Based on Probabilistics theory
 Random variables used to describe the timing 

behaviour of ‘events’ of the system
◦ E.g., to represent the event of a hit/miss in cache

 Probabilistic Analysis for CRTEs requires precise 
hypotheses about the random variables (RV)
◦ Independence of RV
◦ Identical distribution of RV

 The timing of the HW/SW must be compliant with 
those properties



 Measurement-based PTA:
◦ Complete runs of the program are made on the 

target time-randomised platform
◦ Execution time distribution is generated based on 

 Measurements
 Probabilistic methods such as Extreme Value Theory, etc.

Two flavors of PTA
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Two flavors of PTA
 Static PTA:
◦ Determine execution time distributions for individual 

operations with their associated probabilities
 Different latencies can occur with different true 

probabilities independent of each other
◦ Convolution is used to generate the execution time 

distribution of the program
◦ Too costly, so used only to tune and validate MBPTA
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The Case of the Cache
 Conventional designs 
◦ Deterministic placement (e.g. modulo) and replacement (e.g. LRU)
◦ Timing analysis unaffordable and/or inaccurate
◦ Small changes in the program or inputs can produce abrupt changes 

in the execution time
 PROARTIS designs
◦ Random placement and replacement
◦ Much less information required
◦ Robust in front of changes

Placement
(which row?)

Replacement
(which column?)



PROARTIS Cache
 True probabilistic behaviour
◦ Hit/miss probability does not depend on whether previous accesses hit 

or missed
◦ Probability only depends on reuse distance

 E.g., A, B, C, A, reuse distance is 3
 Reuse distance can be determined at symbolic level without absolute 

addresses
 Only needed for SPTA
 Lack of information degrades WCET slightly as opposed to conventional 

designs

 Execution time distributions associated to probabilities
◦ Hit/miss outcome depends on true probabilities
◦ Execution time distribution fulfils properties required by probabilistic 

timing analysis methods 
 MBPTA can be used on top of these designs since they provide 

probabilities, not frequencies of events



Status of PROARTIS
 Preliminary results obtained for single-core systems
◦ Timing analysis techniques
◦ Cache-like structures: HW and SW solutions
◦ Results for Airbus case studies and some benchmarks

 Multi-core systems
◦ To be covered during 2012



 Limitations of current analysis techniques are 
accentuated with more complex hardware
◦ High dependence on unaffordable amounts of highly-

accurate information
◦ Minimal changes produce unpredictable WCET 

impact. The full system must be reanalysed
 We have shown the feasibility of the probabilistic 

approach
◦ Reduces the information required to calculate WCET 

estimations
◦ Highly robust to changes
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The Case of the Cache
 On every access, a line (entry) is randomly evicted from the 

cache. 

 Has an i.i.d. behaviour.
 Probability of hit is based only on: 
◦ K reuse distance 

 Sequence A B C D A. 
 K =            ∞ ∞ ∞ ∞ 4

◦ N number of cache entries

@



Static PTA: Cache architecture
 Distribution of execution times:
◦ The distribution of the number of cache hits/misses 
◦ Knowledge of the time penalties for cache hits and misses

 These distributions describe the probability that each 
instruction will take a given execution time. 
◦ Example:

 Memory operations:     (1, 100)      ( ((N-1)/N)k, 1- ((N-1)/N)k)
 Core operations                   (N)                           (1)  



Static PTA: Cache architecture
 Single WCET estimation WCET estimation function 
◦ Computed by convolving the probability distribution of each inst.

 Example with the cache 
◦ hit latency = 1, miss latency = 100
◦ 32 entry cache

Phit(A) = (31/32)4



Static PTA
 Exceedance plot of the distribution function
 Arbitrarily low probabilities (e.g. 10-50)

Extinction
Level
Events
(ELE)



Effect of lack of information
 How each WCET techniques reacts when part of 

the required information is missing?
 Reference case:
◦ Static analysis: 

 All addresses are known (tightest WCET estimation 
possible), i.e. the actual WCET

◦ Probabilistic analysis: 
 Reuse distances known.

◦ Knowing the reuse distance requires much less
information about the memory operations than 
knowing the exact sequence of memory operations.

 Effect of lack of information:
◦ Static analysis: a given percentage of the accesses to 

memory have an unknown address.
◦ Probabilistic analysis: a percentage of RD are unknown



Effect of lack of information
 Fair comparison of timing analysis techniques is difficult. 
◦ Many factors affect the accuracy of WCET estimations 

 We focus on the timing analysis of the cache only
 In our experimental setup the cache is the only source of 

WCET estimation inaccuracy. 
◦ Simple in-order pipeline in which each instruction that is not a 

memory operation takes a fixed, a-priori known latency 
 Prevent the processor pipeline having effects on timing variability
 Worse if  timing anomalies or domino effects,.

◦ Single-path programs, i.e., the bounds to all loops are known
 Discount the effect of other phases of the analysis, such as path 

analysis or loop bound analysis



Deterministic cache
 8-set cache with a given initial state
◦ The subscript is the LRU-stack position.



Time-Randomized cache
 Probability of hit or miss based only on a metric of 

cache entry reuse distance, 



Effect of lack of information
 Benchmark (100 iterations)

 Deterministic cache
◦ 2-, 4- and 8-way LRU cache

 Time-randomized cache
◦ Random evict on access



Effect of lack of information
 All information known  static outperforms prob.
 Static suffers an abrupt change in the provided 

WCET est.
 Probabilistic has a much smother behavior
 Probabilistic improve static analysis when 

unknown information is 10% 



Sensitivity to exceedance probability
 Exceedance probabilities: 10-3 - 10-30

◦ Decreasing the exceedance probability to increase the 
safety level of the system does not have a  significant 
impact in the WCET estimations
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Static Timing Analysis Measurement Based Analysis

 static analysis
o software is modeled 
o hardware is modeled 

 dynamic information (loop bounds, 
infeasible paths, possible data values) 
must specified by the user

 correctness relies on:
o correctness of hardware modeling
o correctness of software modeling 
o correctness of additional proper-

ties specified by the user

 measurement-based
o software is modeled 
o partial execution times are 

measured on real hardware 

 dynamic information (loop bounds, 
infeasible paths, possible data values) 
are observed

 correctness relies on:
o correctness of software modeling 
o validity of measuring the 

instrumented software
o sufficiency of testing used to drive 

the measurement process

Conventional WCET analysis



Effect of lack of information
 Time-randomized cache provides low WCET 

estimates that 
◦ degrade smoothly as we reduce the cache size or 
◦ increase the fraction of unknown addresses, 



 Spanish national research centre (www.bsc.es)
◦ +300 people (>80% are researchers)

 Areas of research:
◦ Life Sciences
◦ Earth Sciences
◦ Computer Sciences

 Research on HPC systems, 
 Desktop-like systems, …
 Real-time systems

BSC: work on real-time systems
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 Research on real-time systems at BSC
 Computer Architecture/Operating System (CAOS)
 www.bsc.es/caos (17 people)
 Projects with 
◦ Sun
◦ IBM
◦ ESA (real-time systems)

 FP7: 
◦ MERASA (real-time systems)

◦ PROARTIS (real-time systems)

◦ parMERASA (real-time systems)

CAOS group
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