Results from PROARTIS

Francisco J. Cazorla and Jaume Abella francisco.cazorla@bsc.es, jaume.abella@bsc.es

www.bsc.es/caos

ESA Workshop on Avionics Data, Control and Software Systems (ADCSS) 25-27 October 2011, ESTEC Multi-Core Processors for Space Applications

PROARTIS Consortium

- PROARTIS FP7 Project (2010-2013)
 - Coordinator: Francisco J. Cazorla (BSC)
 - Web: <u>www.proartis-project.eu</u>
 - Partners/contributors:
 - BSC: Francisco J. Cazorla, Eduardo Quiñones, Leonidas Kosmidis, Jaume Abella, Gina Alioto, Emery Berger, Charlie Curtsinger
 - U. of Padua: Tullio Vardanega, Elisa Turrini, Enrico Mezzetti, Andrea Baldovin
 - Rapita systems: Guillem Bernat, Mike Houston, Ian Broster
 - INRIA: Liliana Cucu, Luca Santinelli, Dorin Maxim, Code Lo
 - Airbus: Benoît Triquet, Franck Wartel
- Disclaimer
 - This work is the outcome of the effort of all the partners in the project
 - Not just the BSC effort

CRTES: Requirements (I)

- Used in Space, Aerospace, Automotive industries (among others)
- Market for CRTES is experiencing an unprecedented growth
- Require guarantees on their time and functional behaviour
 - Most critical ones require strong arguments
 - Timing correctness

- WCET Analysis
- Schedulability Analysis

CRTES: Requirements (II)

CRTEs require more computational power

- More and more functions required
- Functions are becoming more complex
- Within bounded development and production costs

Overview

Motivation

- Requirements of current/future CRTEs
- Timing Analysis
 - Limitations of current approaches
 - Dependence on Execution History
- Feasibility of the probabilistic approach
 - Illustrative example

Conclusions

SoA Timing Analysis approaches

- Ascertain the timing behaviour of CRTEs
 - static timing analysis (STA) and
 - measurement-based (MBTA) techniques
- Adoption of complex hardware (multi-cores, caches, etc.) for higher performance
 - Exacerbates some of the intrinsic limitations of these techniques
- Effort of acquiring:
 - (1) Detailed information on the hardware to develop an accurate model of its execution latency
 - (2) Knowledge of the timing behaviour of the program in the presence of hardware conditions sensitive to the history of previous execution

Execution history

- Current architectures exploit execution history to improve performance
 - Caches are the epitome of that idea
 - Temporal and spatial locality
- The average execution time and WCET of programs heavily depend on execution history
- Gathering such information is complex and costly
 - E.g. cache analysis:

- Determine whether a memory access will be a hit or a miss
- Model all possible cache states
- Time composability is killed when timing behaviour depends on execution history
 - Slight modifications in one of the programs implies reanalysing the timing of the whole system

Static Timing Analysis

- Requires exhaustive knowledge of all factors that determine the *execution history* of the program
- Limitations
 - Increasingly complex processor architectures
 - Intellectual property restrictions
 - Incomplete and/or inaccurate documentation
 - E.g., errata!!

- Program addresses may be unknown at analysis time
- Reduction of available knowledge → degradation of the tightness of the WCET
 - Unknowns → pessimistic assumptions → higher WCET estimation

MBTA

- Relies on extensive testing performed on the real system under analysis using stressful tests
- WCET = MOET x by an engineering margin
 - Make safety allowances for the unknown
 - Based on experience

- Safeness of the engineering margin is extremely difficult – if at all possible – to determine,
 - System may exhibit discontinuous changes in timing
 - E.g. pathological cache access patterns

Summary

- Current analysis techniques are unable to scale up to the increasing hardware complexity
- Significant degradation of the quality of the resulting products
 - Pessimistic WCET

- High cost to retrieve information
- Minor modifications require reanalysing the whole system

PROARTIS hypothesis

- The knowledge required to perform trustworthy analysis can be reduced
 - Adopting a HW/SW whose execution timing behaviour eradicates dependence on execution history
- One way to achieve this independence is
 - Introducing randomness into the timing behaviour of the HW/SW
 - Coupled with new probabilistic timing analysis techniques
 - The functional behaviour is left unchanged

Probabilistic nature of the system

- Physical parts of the system have a probability of failure
 - E.g., the processor itself has a (low) probability of malfunction
- Timing failures can be considered just another type of failure that the system may experience
- The objective of the probabilistic timing analysis is
 - Providing safe and tight WCET estimations
 - Keeping the overall failure rate of the system below the domain specific threshold of acceptability

Probabilistic Timing Analysis

 PTA allows cutting the WCET bound tail at the level of probability suited for the system (e.g. 10⁻¹⁶)

Clarification

Note that probability is different from the frequency of events

Probability of 1, 1, 1, 1, 1?

unknown

Probabilistic Timing Analysis

- Based on Probabilistics theory
- Random variables used to describe the timing behaviour of 'events' of the system
 - E.g., to represent the event of a hit/miss in cache
- Probabilistic Analysis for CRTEs requires precise hypotheses about the random variables (RV)
 - Independence of RV
 - Identical distribution of RV
- The timing of the HW/SW must be compliant with those properties

Two flavors of PTA

- Measurement-based PTA:
 - Complete runs of the program are made on the target time-randomised platform
 - Execution time distribution is generated based on
 - Measurements
 - Probabilistic methods such as Extreme Value Theory, etc.

Two flavors of PTA

Static PTA:

- Determine execution time distributions for individual operations with their associated probabilities
 - Different latencies can occur with different true probabilities independent of each other
- Convolution is used to generate the execution time distribution of the program
- Too costly, so used only to tune and validate MBPTA

The Case of the Cache

- Conventional designs
 - Deterministic placement (e.g. modulo) and replacement (e.g. LRU)
 - Timing analysis unaffordable and/or inaccurate
 - Small changes in the program or inputs can produce abrupt changes in the execution time
- PROARTIS designs
 - Random placement and replacement
 - Much less information required
 - Robust in front of changes

PROARTIS Cache

- True probabilistic behaviour
 - Hit/miss probability does not depend on whether previous accesses hit or missed
 - Probability only depends on reuse distance
 - E.g., A, B, C, A, reuse distance is 3
 - Reuse distance can be determined at symbolic level without absolute addresses
 - Only needed for SPTA
 - Lack of information degrades WCET slightly as opposed to conventional designs
- Execution time distributions associated to probabilities
 - Hit/miss outcome depends on true probabilities
 - Execution time distribution fulfils properties required by probabilistic timing analysis methods
 - MBPTA can be used on top of these designs since they provide probabilities, not frequencies of events

Status of PROARTIS

- Preliminary results obtained for single-core systems
 - Timing analysis techniques
 - Cache-like structures: HW and SW solutions
 - Results for Airbus case studies and some benchmarks
- Multi-core systems
 - To be covered during 2012

Conclusions

- Limitations of current analysis techniques are accentuated with more complex hardware
 - High dependence on unaffordable amounts of highlyaccurate information
 - Minimal changes produce unpredictable WCET impact. The full system must be reanalysed
- We have shown the feasibility of the probabilistic approach
 - Reduces the information required to calculate WCET estimations
 - Highly robust to changes

Results from PROARTIS

Francisco J. Cazorla and Jaume Abella francisco.cazorla@bsc.es, jaume.abella@bsc.es

www.bsc.es/caos

ESA Workshop on Avionics Data, Control and Software Systems (ADCSS) 25-27 October 2011, ESTEC Multi-Core Processors for Space Applications

The Case of the Cache

On every access, a line (entry) is randomly evicted from the cache.

- Has an i.i.d. behaviour.
- Probability of hit is based only on:
 - K reuse distance
 - Sequence A B C D A.
 - K = ∞∞∞∞4
 - N number of cache entries

$$P(hit) = \left(\frac{N-1}{N}\right)^{K}$$

Static PTA: Cache architecture

- Distribution of execution times:
 - The distribution of the number of cache hits/misses
 - Knowledge of the time penalties for cache hits and misses
- These distributions describe the probability that each instruction will take a given execution time.
 - Example:

- Memory operations: (1, 100) (((N-1)/N)^k, 1- ((N-1)/N)^k)
- Core operations (N) (1)

Static PTA: Cache architecture

- Single WCET estimation \rightarrow WCET estimation function
 - Computed by *convolving* the probability distribution of each inst.
- Example with the cache
 - hit latency = 1, miss latency = 100
 - 32 entry cache

	Address	Reuse Distance (K)	Hit Probability (N=32)
	A	∞	0.00
	B	∞	0.00
(С	∞	0.00
	D	∞	0.00
	A	4	0.88
	В	4	0.88
	С	4	0.88
	Α	3	0.91
	В	3	0.91
	С	3	0.91

$$Phit(A) = (31/32)^4$$

Static PTA

Exceedance plot of the distribution function

Arbitrarilv low probabilities (e.g. 10⁻⁵⁰)

Effect of lack of information

- How each WCET techniques reacts when part of the required information is missing?
- Reference case:
 - Static analysis:
 - All addresses are known (tightest WCET estimation possible), i.e. the actual WCET
 - Probabilistic analysis:
 - Reuse distances known.
 - Knowing the reuse distance requires <u>much less</u> information about the memory operations than knowing the exact sequence of memory operations.
- Effect of lack of information:
 - Static analysis: a given percentage of the accesses to memory have an unknown address.
 - Probabilistic analysis: a percentage of RD are unknown

Effect of lack of information

- Fair comparison of timing analysis techniques is difficult.
 - Many factors affect the accuracy of WCET estimations
- We focus on the timing analysis of the cache only
- In our experimental setup the cache is the only source of WCET estimation inaccuracy.
 - Simple in-order pipeline in which each instruction that is not a memory operation takes a fixed, a-priori known latency
 - Prevent the processor pipeline having effects on timing variability
 - Worse if timing anomalies or domino effects,.
 - Single-path programs, i.e., the bounds to all loops are known
 - Discount the effect of other phases of the analysis, such as path analysis or loop bound analysis

Deterministic cache

- 8-set cache with a given initial state
 - The subscript is the LRU-stack position.

(a) initial state

Ø _{mru}	A _{mru}
Ø _{mru}	Clru
Ø _{mru}	Elru
Ø _{mru}	G _{lru}
Ø _{mru}	l _{Iru}
Ø _{mru}	K _{lru}
Ø _{mru}	M _{Iru}
Ø _{mru}	Olru

Ø _{mru}	Ø _{lru}
Ø _{mru}	Ø _{lru}

Time-Randomized cache

 Probability of hit or miss based only on a metric of cache entry reuse distance,

$$P(hit) = \left(\frac{N-1}{N}\right)^{K}$$

Address	Reuse Distance (K)	Hit Probability (N=32)		Address	Reuse Distance (K)	Hit Probability (N=32)
Α	∞	0.00		A	∞	0.00
В	∞	0.00		В	∞	0.00
С	∞	0.00	N	С	∞	0.00
D	∞	0.00		D	∞	0.00
A	4	0.88		?	8	0.00
В	4	0.88		B	4	0.88
С	4	0.88		Ē	4	0.88
Α	3	0.91		Ā	7	0.80
В	3	0.91		В	3	0.91
С	3	0.91		C	3	0.91

Effect of lack of information

Benchmark (100 iterations)

:LOOP_START load @1 load @2 ... load @100 iter = iter + 1 compare iter, 100 jump LOOP_START if smaller

- Deterministic cache
 - 2-, 4- and 8-way LRU cache
- Time-randomized cache
 - Random evict on access

Effect of lack of information

- All information known \rightarrow static outperforms prob.
- Static suffers an abrupt change in the provided WCET est.
- Probabilistic has a much smother behavior
- Probabilistic improve static analysis when unknown information is 10%

Sensitivity to exceedance probability

- Exceedance probabilities: 10⁻³ 10⁻³⁰
 - Decreasing the exceedance probability to increase the safety level of the system does not have a significant impact in the WCET estimations

Conventional WCET analysis

	Static Timing Analysis	Measurement Based Analysis
•	 static analysis software is modeled hardware is modeled 	 measurement-based software is modeled partial execution times are measured on real hardware
•	dynamic information (loop bounds, infeasible paths, possible data values) must specified by the user	 dynamic information (loop bounds, infeasible paths, possible data values) are observed
•	 correctness relies on: correctness of hardware modeling correctness of software modeling 	 correctness relies on: correctness of software modeling validity of measuring the

- correctness of software modeling 0
- correctness of additional proper-0 ties specified by the user

instrumented software sufficiency of testing used to drive the measurement process

Effect of lack of information

- Time-randomized cache provides low WCET estimates that
 - degrade smoothly as we reduce the cache size or
 - increase the fraction of unknown addresses,

BSC: work on real-time systems

- Spanish national research centre (<u>www.bsc.es</u>)
 - +300 people (>80% are researchers)
- Areas of research:
 - Life Sciences
 - Earth Sciences
 - Computer Sciences

- Research on HPC systems,
- Desktop-like systems, ...
- Real-time systems

CAOS group

- Research on real-time systems at BSC
- Computer Architecture/Operating System (CAOS)
- www.bsc.es/caos (17 people)
- Projects with
 - Sun
 - IBM
 - ESA (real-time systems)

- FP7:
 - MERASA (real-time systems)
 - PROARTIS (real-time systems)
 - parMERASA (real-time systems)

