

On-board processing for the Euclid mission

Pierre-Elie CROUZET, SRE-PAI

Outline

- Euclid mission case study
- The H2RG infrared detector
 - Readout chain
 - Specifications
 - Way of sampling
 - Requirement
- Data processing
 - Data processing steps
 - Results with a LEON2 board
 - Consequences
- Conclusion

Euclid case study

- Nature of dark matter and dark energy
- Euclid will perform a sky survey and is optimized to measure simultaneously two principal dark energy probes:
 - Weak lensing measurement down to in band 550 to 920 nm
 - Baryon Acoustic Oscillations (galaxy distribution power spectrum)
- Main parameters:
 - Launch 2018 (Soyouz)
 - L2 orbit (1.5 10⁶ km away from Earth)
 - 7 years mission nominal
 - 1.2 meter telescope
 - 2 instruments:
 - VIS channel: 36 CCDs 4k x4k, 550-920 nm imager
 - 0.1 arcsec/pixel, FoV 0.5 deg²
 - 150 K operational temperature.
 - magAB=24.5, Y,J,H
 - NISP channel: **16 H2-RG (large focal plane)**, 2k x2k, 1.0-2.0 um photo-spectrometer
 - 0.3 arcsec/pixel, FoV~0.5 deg²
 - 90-100 K for the FPA
 - magnAB=24 Y,J,H

Infrared detectors: H2RG

- State of the art detector already used for
 - Hubble Space Telescope, Wild Field Camera 3
 - NIFS Gemini north (Mauna Kea, Hawaii)
 - JWST Near Infrared Spectrograph
 - ESO, X-shooter (spectrograph), Paranal

Usually data processing done on ground but not for Euclid :

•L2 satellite

•Efficiency of observation (downlink during 4 hours/day)

Readout chain

JADE: JWST ASIC Drive Electronics

ESA UNCLASSIFIED - For Official Use

Specifications

Company	Teledyne	
Detector name	HAWAII-2RG	
Pixel size	18 µm	
Number of pixels	2048 x 2048	
Readout frequency	100kHz or 5Mhz	
Number of outputs	1,4 or 32	
Frame size	Full frame, window mode	
Reference	Pixels or one channel	
Reset scheme	By pixel, by line or globally	

sa 1 output 4 rows and 4 column of reference pixels 37 more of 64*2048 2048 2048 els pixels pixels 1.36s at 100kHz SS-2011 | 27-Oct-2011 | Slide 6 2048 pixels

P. Crouzet | C

Way of sampling

esa

Way of sampling

- Example of one acquisition:
 - Non destructive readout (not like a CCD)
 - Evolution of the signal for one pixel

Data processing is needed to compute final signal and its uncertainty

P. Crouzet | On-board processing for the Euclid mission | ADCSS-2011 | 27-Oct-2011 | Slide 8 ESA UNCLASSIFIED – For Official Use

Euclid NISP channel requirements

Requirement:

- Real time processing of 2048*2048 pixels (16 bit per pixel)
- 560s of exposure time
 - → baseline : 30 groups of 8 samples and 5 discarded

Between 15s to 32s (time between groups) to process each frames (2048*2048 pixels)

Overview of pre-processing steps

P. Crouzet | On-board processing for the Euclid mission | ADCSS-2011 | 27-Oct-2011 | Slide 10 ESA UNCLASSIFIED – For Official Use

- Goal: remove pixel-to-pixel variation in offset
- Subtract a map of bias frames to all frames in science exposure
 - Need to access to a bias frame (2048*2048 pixels)
 - One subtraction for each pixel (2048*2048 pixels)
 - Quicker if it is done in parallel for each pixels

	Operations per Pixel	
Function	Integer	Floating point
Subtract Bias	6.0	1.0

Reference pixel correction

- Goal: remove common noise
- For each 32 outputs :
 - calculates the mean of the odd and even pixel of the first 4 and last 4 rows and removes it from the odd and even pixel of the image.
 - Running average of the lateral pixel

	Operations per Pixel	
Function	Integer	Floating point
Reference Pixel Correction	10.5	2.1

Operations can be done in parallel for each outputs, odd and even pixels

ESA UNCLASSIFIED – For Official Use

| Slide 12 Results obtained thanks to Andreas Jung (TEC-SWE)

Linearity correction

- Goal: correct from non-linearity in the detector
- 4th order polynomial correction with a single set of coefficients for all pixels or, in the worst case an independent set for each pixel
 - Need to access to 4 frames of coefficients

	Operations per Pixel	
Function	Integer	Floating point
Linearity Correction And Saturation Detection	15.0	12.0

Slope and uncertainty calculation

- Real time processing and cosmic detection
- for each pixel:
 - Estimation slope and intercept (linear least square method)
 - Extrapolation next point
 - Add noise to interpolated point
 - Flag if next point is not in the threshold
 - Subtracting running mean of all the following differences found (Δ)
 - Continue estimate slope and intercept

CPU results without cosmic

--> Execution time:

apply Flat Field Correction: start... end. --> Execution time:

Environment: LEON2 @ 80MHz with 3 memory wait states and caches enabled and execution only in SDRAM

Euclid pre-processing algorithms profiling program - Version 20110601 1415 ### Image size: 1024x1024 ### Timer CLOCKS PER SEC: 1e+06 Main: start... Subtract Bias: start... end. For each frame (1024*1024) --> Execution time: 447.591ms linearity Correction And Saturation Detection: start... end. --> Execution time: 2177.544ms $t_{\text{process}} = 9.8s$ subtract Reference Pixel: start... end. --> Execution time: 744.822ms 40s for 2048*2048 pixels! detect Cosmic Ray: start... end. --> Execution time: 6479.772ms calculate Final Signal Frame: start... end. --> Execution time: 2041.450ms Adding 2.9s at the end subtract Dark Current Pedestal: start... end.

447.591ms

447.592ms

Main: ...end reached.

Improvement can be done (only integer is on going) but multi-core architecture is beneficial

P. Crouzet | On-board processing for the Euclid mission | ADCSS-2011 | 2 Results obtained thanks to Andreas Jung (TEC-SWE) ESA UNCLASSIFIED - For Official Use

Consequences

- Memory consumption for 4 MPixel →228MB is expected (can be decreased to 148MB if we assume same coefficient for non-linearity correction)
- Only 6 frames can be processes (instead of \approx 240) in 400s
- → Can be improved with 3, 4... Leon2 per detector
 - → Power consumption increase
 - \rightarrow Need more space in the payload

Multi-core processor is an ideal candidate!!

Conclusion

- Data processing for Euclid
 - 16 detectors, 2048*2048 pixels per detector
 - For each detector and each frame : multi parallel operations (bias, reference pixels correction)
 - Non optimized results with LEON2 show to much time needed

 \rightarrow For the incoming mission at L2 with large focal plane multi-core processing is welcome!

 For K-band communications, the maximum daily downlink telemetry rate is 0.85 Tbits/day for a daily telemetry communication period of 4 hours.