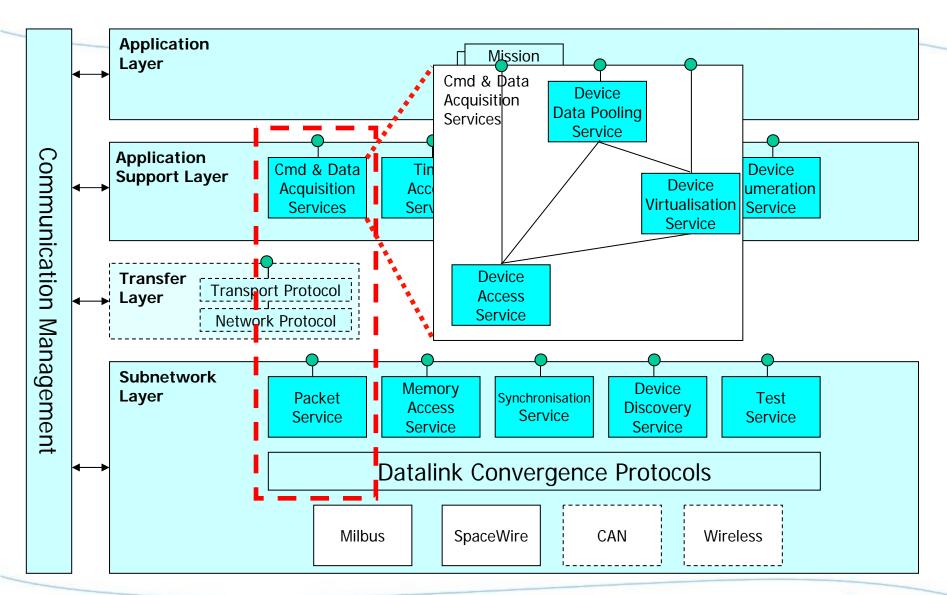


SOIS Architecture and use of Electronic Data Sheets

Stuart Fowell, SciSys


ADCSS 2011, 25th October 2011

Overview

- Location in SOIS Architecture
 - > SOIS Plug-and-Play
- Current approach to accessing Sensors/Actuators
- > Device Virtualisation
 - > Concept: Interfaces, Protocols and Services
 - Device Data Pooling
 - > Worked Example
- > Electronic Data Sheets
 - Concept
 - > SOIS Plug-and-Play Architecture
 - CCSDS Approach to Standardisation
 - > EDS Technologies
 - > EDS Structure
 - > Worked Example: Development Process with EDS
- Interactions with SOIS-SAFI
- > Outlook

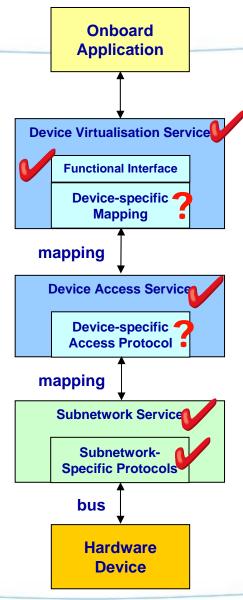
Location in SOIS Architecture

SOIS Plug-and-Play

- SOIS taking a broad definition of plug-and-play, encompassing design-time activities as well as "run-time" activities
- Goals
 - Interoperability Application and device portability through isolation of the two, permitting flexibility and innovation in both
 - Adaptivity Allow systems to adapt to change, probably more during the development process
 - Rapidity Shorter development times, assisting design, implementation, integration and testing
- > Use Cases
 - Rapid Spacecraft Development Development Tool Chain
 - Automated Integration & Test Adaptivity of EGSE
 - > **Dynamic Fault Recovery** Reconfiguration aspects of FDIR
 - > **Dynamic Device Migration** human and robotic missions
- Not talking about subnetwork device discovery today...

Current Approach to accessing to Sensors/Actuators

- Information for accessing AOCS devices currently provided in ICDs and Basic Software Device Drivers
 - Paper document, not standardised form
- What is the impact of how its delivered today?
 - > Little is standard
 - Not all information provided
 - > Discrepancies between ICD and actual reality?
 - > Difficult to check for discrepancies
- How much device-specific functionality is built into applications?
 - > Device Drivers, Equipment Management software function
 - > How much changes between missions?
 - > Affecting devices, applications, device drivers etc
- Recognised by Primes as a problem
 - E.g. Astrium looking to use spacecraft databases as a start to auto-coding configuration of system
 - Not standardised across industry
- > SAVOIR-SAIF addressing electrical interface but doesn't cover functional interfaces
- > How are SOIS proposing to solve it?
 - Device Virtualisation and Electronic Data Sheets

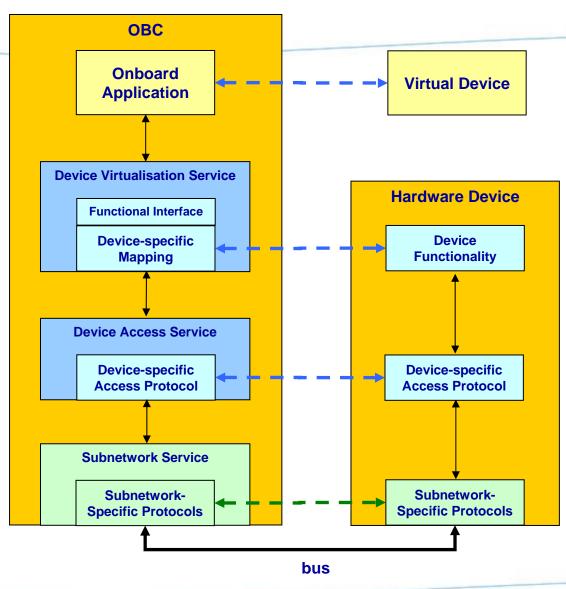


Device Virtualisation – Concept

- > What is Device Virtualisation?
 - > Applications interface with devices at a Functional Interface
 - Mapped onto access protocols
 - Not directly using protocols or device representation of commands and data values
 - > Aim is for single standard Functional Interface per device type
- > What does Device Virtualisation do for you?
 - > Swappable devices = reuseable applications
 - > Standard access protocols = reuseable devices
- BUT only works if Functional Interface isolates Applications from devicespecific characteristics
 - What if the differing characteristics of the different devices affect the algorithms of the applications?
 - > Can they be input parameters to configure e.g. control loop?
 - Can't substitute for system engineering

Interfaces, Protocols and Services

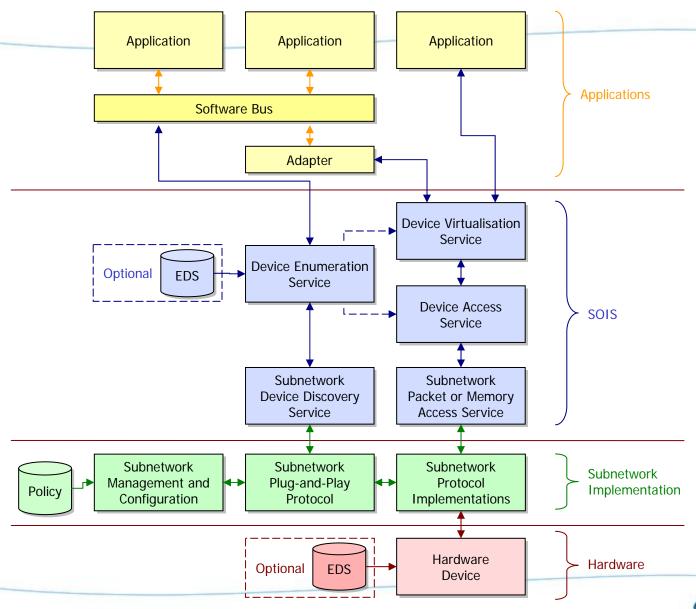
- > Subnetwork-specific protocol
 - How to transfer data to/from device across subnetwork
 - QoS: ack, retransmit, priority etc
- > Device-specific Access Protocol
 - How to command and acquire raw data for specific devices using subnetwork-specific protocols
 - State machine
- > Device-specific Mapping
 - How the functional interface is mapped onto the device-specific access protocols
 - > Type conversions, operations, state-machine
- > SOIS Services
- > Standardisation:
 - Trade-off what/where to standardise?
- Virtualisation adds some overhead
 - DAS can be directly accessed at a cost of tying application to particular device
 - If devices move towards directly supporting the functional interface, the mapping becomes NULL


Device Data Pooling

- SOIS Device Data Pooling Service maintains an image of the states of a number of devices' values
- User applications access state of a device's value in data pool without having to generate explicit data acquisition request to actual device
 - > History of samples maintained together with QoS associated with each sample
- DDPS periodically acquires data from devices at determined sampling rate or caches data from devices that asynchronously generate samples
 - > Samples either raw (DAS) or functional interface (DVS)
- Avoids repetition of multiple users performing same acquisitions on devices
- Provides a synchronisation point for multiple acquisitions e.g. synchronised to underlying subnetwork using the SOIS Subnetwork Synchronisation Service
- What it doesn't provide
 - Software parameter data pool
 - > PUS HKTM parameter packets

Worked Example: Accessing a Virtualised

Device



Electronic Data Sheets

- What are Electronic Data Sheets (EDS)?
 - > Electronic specification of information normally found in ICDs
 - > But also covers generic Functional Interface
- Doesn't have to be used but provides:
 - Uniformity of information
 - > Inputs for tools:
 - Automatic coding/configuration of device drivers (SOIS)
 - Simulation of devices
 - > Test tool for devices
 - Automatic import into Spacecraft database
 - Etc
 - Online dynamic discovery of device capabilities yeah, right! @
 - > Enabler for standardisation of functional interfaces across device types
- What does EDS do for you?
 - > System Engineer
 - Define requirements on interfaces
 - Allows conformance testing of devices to ensure they meet interfaces
 - Configuration support during integration of spacecraft
 - Application Developer
 - > Allows conversion of functional interface into API, software model, etc
 - Automatic generation of device driver
 - > Device Manufacturer
 - Drives testing of device interface
 - Avoids discrepancies between ICD and device, ICD and device driver

SOIS Plug-and-Play Architecture

CCSDS Approach

- CCSDS SOIS Area
 - > ESA, NASA, UKSA & associates
- Looking to standardise EDS
 - > EDS format standard
 - Extensible Dictionary of Terms standard
 - > Template EDSs covering Functional Interfaces for device types (open issue)
 - Not a straightforward thing to do!
- > What needs to be in an EDS?
 - > Understand what we are defining
 - > Structure, elements and referencing
 - Types, interfaces and state machines
 - > Taking inputs from AIAA/AFRL SPA and SAVOIR-SAFI
- Currently
 - Defining use cases, deriving requirements
 - > Evaluating existing EDS technologies
 - > IEEE 1451 TEDS
 - > AIAA/AFRL SPA xTEDS
 - CANopen
 - > OMG/CCSDS XTCF
 - Establishing EDS structure & roadmap for prototyping/adopting technologies

EDS Technologies (1/2)

> IEEE 1451 TEDS

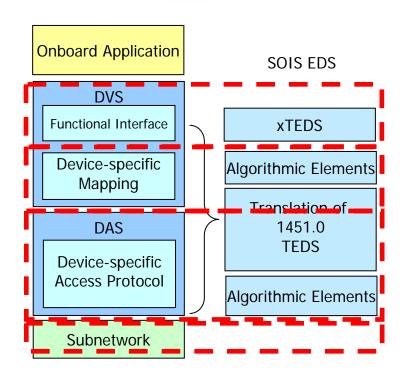
- > Suite of standards which defines access to "smart transducers"
- > Each transducer connected to intermediate Transducer Interface Module (TIM) that acts as its representative to rest of the system
- Complete TIM interface to a transducer defined by 1451.0 base specification TEDS and 1451.X network technology-specific TEDS
- > TEDS have variety of formats, inc. text, binary and (subset in) XML
- > Widely used in other domains, candidate for "spin-in"

> AIAA/AFRL SPA xTEDS

- > Space Plug-and-Play Architecture (SPA) over-arching architecture for s/c and components for rapid assembly and integration, from AFRL for Operationally Responsive Space programme
- > Published in draft form by AIAA, covering architecture, electrical, coms and mechanical specs
- > Comms in SPA is message passing, with network-connected intelligent devices communicating in identical manner to software applications
 - Applications and devices communicate at same level & are effectively interchangeable
- Message exchanges follow number of pre-defined patterns and transported over network by predefined protocols
- Valid messages defined in an EDS that comes with product (software or device), may be stored with device or in central database of spacecraft
- > Common Data Dictionary defined semantic terms
- > Publish-subscribe
- > EDS inspired by IEEE 1451 TEDS and in XML format (xML) TEDS => xTEDS

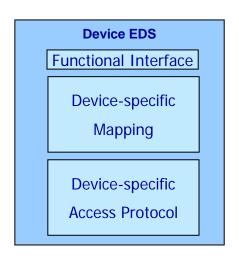
EDS Technologies (2/2)

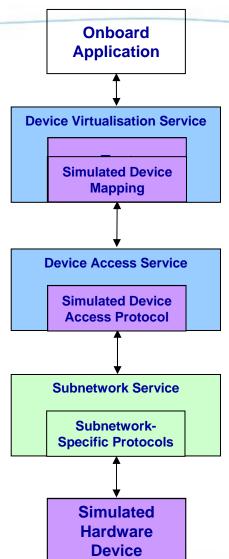
CANopen


- Provides functionality equivalent to network & above OSI layers through basic CAN message
 - 8 data bytes + 11-bit identifier
 - Protocols of CANopen use identifier for device & function identifier
 - Service Data Object (SDO) protocol transfer of data objects between nodes through get/set iof objects in remote object dictionary in a client/server model
 - Process Data Object (PDO) protocol broadcast of data objects, mapped to object dictionary entries
- > Object Dictionary core to CANopen
 - Each entry has index, symbolic object name, descriptive name, data type, access rights and mandatory/optional flag
 - Basic and composite data types
- > Device Object Dictionary
 - Conform to base specification of CANopen
 - Device Profiles (fuller object dictionaries) specified for device types
 - Device conforms to one or more device profiles
- Object Dictionary defined as an EDS, originally in text and now in XML (XDD)

> OMG/CCSDS XTCE

- XML Telemetric and Command Exchange (XTCE) defines communications data format and protocol in XML
- > Aimed at allowing information for monitoring & control of spacecraft to be defined in XTCE file
- > Includes:
 - variable packet formats, with elements conditional on packet contents
 - > Simple processing/conversion algorithms or referencing external algorithm implementations
- > Not strictly a datasheet technology but has many interesting characteristics


EDS Structure


- > EDS elements mapping to DVS and DAS data
 - Candidate technologies
 - > Functional Interface
 - > Device-specific Mapping
 - Device-specific Access Protocol
- > Who provides/uses what?
 - > System Engineer
 - > Application Developer
 - > Device Manufacturer
 - Device Driver Developer (no longer exists?)

Worked Example: Development Process with EDS

- 1. System Specification
 - 1. Application, Bus and Device Functional Specification
 - 2. SOIS, Device Virtualisation and EDS Technology Selection
 - 3. Device Functional Interface Selection
- 2. Component Development:
 - i. Device development & testing against EDS
 - ii. Application development & testing against Functional Interface
- 3. Progressive integration:
 - i. Auto-generation of device drivers & integration with device
 - ii. Integration with application
- 4. Run-time

Interactions with SAVOIR-SAFI

- > ETSI SSDHI original attempt to define generic functional interface
 - > Inspired by SOIS
- > SOIS provides Framework
 - > Specification of Functional Interface and mapping onto Device-specific Access Protocol for each device
 - Can be captured in an EDS
- > SAVOIR-SAFI
 - Define generic Functional Interface for device types
 - Sensors: Start tracker, Gyro, Sun sensor
 - Actuators: Reaction wheel, Magneto torquer
 - Check mapping to generic Functional Interface to specific devices' Devicespecific Access Protocols
- > Allowing SOIS to provide
 - > Specification of template EDS for device types

Outlook

- > Standard Electronic Data Sheets
 - Need to consolidate structure and candidate technologies
 - Prototyping leading to drafting of standard (2013?)
- > Standard Functional Interface for device types
 - > SAVOIR-SAFI output (2012?)
 - Associated SOIS EDS per device class (2013?)

