

CCSDS Mission Operations

Sam Cooper (SciSys), Mario Merri (ESA)

Overview

> Primer

- > Integration with on-board architectures
- > MO Services
 - > Mapping to and from PUS
- > Status and Future

Primer

Packet Utilisation Standard

- > The PUS continues to serve us well and will also be improved in the next update, However:
 - > Only used in Europe
 - > Only really extends as far as the edge of the MCS
 - > Fixed to CCSDS Space Packets

> The CCSDS Spacecraft Monitor & Control WG is defining a standard that

- Extends from the onboard applications right through the ground systems to the end users
- > Is compatible with all CCSDS Agencies
- With support of standardised architectures such as SAVOIR-FAIRE will provide a single solution for the M&C of any spacecraft by any agency
- > Known as the CCSDS Mission Operations (MO) Services

Relationship to PUS

- > MO Services are fundamentally based on PUS
 - > Refactored to make them self-consistent and transport independent
- > MO Services expand PUS Services
 - > MO Services cover more functions than PUS
- > MO Services improve PUS Services
 - The specifications are independent of transport and encoding technology
 - > A Message Abstraction Layer (MAL) ensures this
 - > They are design to be used on-ground, on-board and across the spacelink

Distributable Mission Operations Functions

Distributable Mission Operations Functions

Technology Independence

- > Service specifications defined in XML
 - Provides a machine readable version of the service specifications
- > Standardised mappings define transformations from the MAL representation
 - > Language mappings for specific programming languages
 - > Technology mappings for 'on-the-wire' transports/encodings
 - > Such as SOIS MTS
 - > Private mappings are also supported
- > Mappings are not service specific they work for all services
 - > Services are defined in terms of the MAL
 - Mappings are defined in terms of the MAL
- > Code generators can be used to auto-generate service APIs
 - > Standard transformations from the XML to languages are defined
 - > Allows high level APIs for applications

Integration with on-board architectures

Implications of Onboard MO Implementation

- > The layered approach of MO aims to reduce implementation complexity
 - > Enables development of components that can be reused
 - > To be effective requires
 - > Appropriate architecture and infrastructure design
 - > Enforcement of policies to strictly adhere to standards
 - > But does NOT come at the cost of efficiency
 - Layers are conceptual
 - Code auto-generation can merge layers and optimise code for selected target platform
- Establishment of a widely accepted and supported reference architecture and API's for onboard SW does help
 - > SAVOIR-FAIRE

Current architecture

Transitional architecture

Future architecture

CCSDS MO Services

Candidate MO Services

> Operationally meaningful information exchange:

> Identified and prioritised by CCSDS space agencies

PUS to MO Service mapping

	PUS Service	MO Service
1	Telecommand verification	COM / Activity
2	Device command distribution	M&C / Action
3	Housekeeping & diagnostic data reporting	COM / Status
4	Parameter statistics reporting	M&C / Statistics
5	Event reporting	COM / Status
6	Memory management	Software management
8	Function management	Automation
9	Time management	Time
11	On-board operations scheduling	Scheduling
12	On-board monitoring	M&C / Check
13	Large data transfer	Data product management
14	Packet forwarding control	Remote buffer management
15	On-board storage and retrieval	Remote buffer management
17	Test	M&C / Action
18	On-board operations procedure	Automation
19	Event-action	Automation

Service only planned by CCSDS, but not yet developed

MO to PUS Service mapping

MO Service	PUS Service
Monitoring and Control	Telecommand verification / Device command distribution / Housekeeping & diagnostic data reporting / Parameter statistics reporting / Event reporting / Function management / On-board monitoring / Test
Time	Time management
Software Management	Memory management
Planning	
Scheduling	On-board operations scheduling (subset of MO service)
Automation	On-board operations procedure (subset of MO service) Event-Action
Data product management	Large data transfer (subset of MO service)
Navigation	
Remote Buffer management	On-board storage and retrieval Packet forwarding control
<i>Common Services: Directory, Login, Interaction, Replay, Configuration</i>	

Service only planned by CCSDS, but not yet developed

Proposed MO/PUS Unification Roadmap

- > The timescale of the two standards are very different
 - > PUS has a revision 'C' due next
 - > PUS has a revision 'D' due 5 years after that
 - MO is expecting to produce our first version of the M&C service in the next 5 years
 - > At this point the two may be able to unify:
 - > PUS gets the MO protocol independence
 - > MO gets flight proven PUS services
- > This leads to the MO view of the roadmap:

Status and Future

CCSDS SM&C Working Group

- > 8 year lifetime (started in Dec 2003)
- > ESA lead activity with excellent team work among agencies!
- > 10 Space Agencies actively involved
- > Very active (15 workshops, 60+ telecons)
- > Quite productive (... and ready for more)

Green Books

- > 2 published (XTCE, MO)
- > 1 under preparation (XTCE Core)

>

- Blue Books
 - > 2 published (XTCE, MAL)
 - > 3 under finalisation (COM, M&C, Common)
 - > 1 under preparation (Space Packet Binding)

Magenta Books

- > 1 published (RM)
- > 1 under finalisation (Java API)
- 2 under preparation (C++ API, XTCE CCSDS)

Yellow Books

- > 1 published (MAL testing)
- > White Books
 - > several in early draft

esa

Prototypes

- **Prototype 1 (ESA/CNES)** Goal: validation of MAL specification as required by CCSDS
 - > Results: Done! Complete automation of 16840 individual tests, the two implementations interoperated perfectly!
- > Prototype 2 (NASA/JSC) Goal: validation of MAL + M&C & Common services
 - Results: Validity of MAL concept proven (3 different underlined technologies used: SOAP/Java, AMS/C, AMS/Python).
- Prototype 3 (CNES) Goal: evaluate feasibility of migration of the CNES mission control system infrastructure, Octave, to MO services and performance
 - Results: Migration possible and economically convenient. Performances depends on architecture, but in general satisfactory (14,000 parameters/s in typical Octave operational configuration)
- > **Prototype 4 (Eumetsat)** Goal: Stack implications and performances
 - Results: Several configurations (Point-2-Point, Pub/Sub, packet size, 1-n clients) and communication technologies (RMI, JMS, AMQP (two broker implementations: Java, C++)) were tested and compared. Performances depend on configuration (range 35,000-2,000 parameters/s). The MAL layer does not add noticeable overhead
- Prototype 5 (DLR-NASA/JSC) Goal: concept and feasibility of MO interoperability between DLR's MCS and JSC Simulator.
 - Results: All tests have successfully completed. Overall objective of an interoperability test where DLR monitor and control a Simulated NASA spacecraft was successful.
- > **Prototype 6 (CNES)** Goal: Validation of the M&C service over CCSDS Space Packets
 - Results: The prototype is still on-going, but so far very successful. Please refer to the paper "Space Packet encoding : Reduce the design effort to zero?" included in the proceedings of SpaceOps 2010
- > **Prototype 7 (ESA)** Goal: Validation of the MAL using Web Services specifications
 - > Results: The prototype is still on-going.

>

Prototypes

> Prototype 8 (NASA/JSC)

- Goal: Prototype a camera service leveraging the CCSDS integrated protocol stack (MO/AMS/DTN) via the ISS
- > Results: the first step has successfully completed. Many lessons learned about the relevant CCSDS protocols and their use together. Feedback being provided to relevant working groups.

Future developments

> Implementation 1 (CNES) ISIS

> ISIS is a completely new generic onboard and on ground system based on PUS, SSM, and MO. Specification is expected to start in 2012 with development starting in 2013.

Implementation 2 (ESA) Ground SW infrastructure

> ESOC Service Management Framework will be ported to the MO service framework as soon as it is available.

Implementation 3 (ESA) SAT-OPS IOD

On-board software

 Proposal from ESOC to deploy demonstration MO applications on the SAT-OPS In Orbit Demonstrator CDF activity.

Future plans

- The strategy is that a future version of the PUS and MO will unify to form a single coherent standard
 - > MO brings a layered, technology agnostic, structure
 - > PUS has the flight proven service set
 - > Aligned with SOIS specifications
- > Make available reference implementations of MO MAL
- > Make available auto-generators for:
 - > Java
 - > C/C++
 - > MS Word
 - > CCSDS XTCE
 - > ...
- > Produce tools that support development of service specifications

End

Backup slides

CCSDS Specification Status

- > MO Concept GB (ESA): published
- > MO Reference Model MB (ESA): published
- > MO MAL BB (ESA): published
 - > can be downloaded free-of-charge from www.ccsds.org
- > Java API MB (CNES): completed Agency review
- > COM BB (ESA): in Agency review
- MO M&C Service BB (ESA): Agency review and prototyping commencing Q1 2012
- MO Common Service BB (ESA): Agency review and prototyping commencing Q1 2012
- > C++ API MB (NASA/JSC): in preparation
- > CCSDS Space Packet mapping BB (CNES): in preparation (Q2 2012)
- > CCSDS AMS and DTN mapping BB (NASA/JSC): in preparation

BB: Blue Book GB: Green Book MB: Magenta Book

Perceived Complexity of the Standard

- > MO concept implies use of multiple layer specific specifications
 - Implies a relatively high level of abstraction in individual specifications
 - Not easy to see the "full picture" when studying one document
 - Not easy to understand what information is actually included in the data structures transferred
- > With proper infrastructure in place, operators would not need to concern themselves with all details
 - Requires a shift in mindset, which may be difficult and take time
- > It is possible to generate tailored documentation from the XML
 - > This is just another output option of the auto-generation tools
 - It can be very PUS like if so desired, it is just a 'display' choice

Example: An MO Operation ...

> An operation in the MO XML format:

```
</smc:requestIP>
```


Example: An MO Operation ...

> Is used to generate tables in the MO specifications:

OPERATION: getCurrentTransitionList

General

The getCurrentTransitionList operation allows a consumer to obtain the status of a number of parameter checks filtering on check state.

Operation Name	getCurrentTransitionList		
Interaction Pattern	REQUEST		
IP Sequence	Message	Field Type	
IN	Request	CheckStatusFilter	
OUT	Response	CompleteStatusList	

Example: ... in PUS style

> But it is simple to generate alternate representations from the XML:

Operation: getCurrentTransitionList

The getCurrentTransitionList operation allows a consumer to obtain the status of a number of parameter checks filtering on check state.

Telecommand application data:

checkFilter	stateFilter
OccurrenceKeyList	CheckStateList

Response telemetry report application data:

N	element
Integer	CompleteStatus

— Repeated N times —

Onboard Implementation Complexity

- > Auto-generation of interface code from service specifications will help
 - > Feasible as MO service specifications provided in XML
- > Use in on-board implementation needs to be considered
 - > Pros
 - Minimises errors when frequent changes are made during development lifecycle
 - > Auto generation of mission databases and documentation
 - > Cons
 - > Still requires validation of the generator or generated code
- > This is currently done internally at SciSys for on-board projects using a proprietary technology
 - > Standardisation of this would increase the reuse benefits
 - > Experience gained from this should be taken into account

How is an MO Message built?

> The more options you can fix the more you can optimise

For a fixed encoding...

> The more options you can fix the more you can optimise

Efficiency of Bandwidth Usage

- > Current MO Service Specifications
 - > are considered verbose
 - > data structures include a superset of all information
 - > data encoding efficiency has been "second priority"
- CNES are currently defining a mapping of MO to CCSDS Space Packets
 - From the abstract model of MO to an efficient binary encoding
 - > Also maps to using CCSDS Space Packets as a transport
 - Uses context information to optimise the information actually carried on the space link
 - > The goal is near PUS efficiency

Relationship to the Space System Model

- Plan is to produce an SSM-like specification for system modelling
- > Would closely follow ECSS SSM concepts
 - > ECSS SSM model is good but PUS specifics preclude its direct use
- Currently looking at using XTCE, maybe with extensions
 XTCE and ECSS SSM are well aligned conceptually
 - Extensions to XTCE may be required to capture the high level system information that an SSM requires

Technical Characteristics

- > Initially based on the PUS for service specification but abstracted
- > Services defined in terms of a set of Operations:
 - Each operation is a "conversation" between Consumer and Provider
 - > The pattern of the exchange are common to many Operations
 - > Generic Interaction Patterns simplify specification
- > Message Abstraction Layer (MAL) provides 6 Patterns:
 - > SEND, SUBMIT, REQUEST, INVOKE, PROGRESS, & PUBLISH-SUBSCRIBE
- > MAL also gives independence from underlying representation
 - Concerned with information exchange rather than 'bits and bytes'

