
Secure Partitioning and Multi-
Core Processors

Thomas PAREAUD, Alain ROSSIGNOL
EADS Astrium

Peter MENDHAM, Stuart FOWELL
SciSys UK Ltd



“Securely Partitioning Spacecraft 
Computing Resources” studies

 Study lead by SciSys
 SciSys (Prime contractor)
 SYSGO (Technology provider)
 Astrium (Operational Scenario Analysis)
 University of York (External security experts)

 Study lead by Astrium
 Astrium (Prime contractor)
 Universitat Politècnica de València (Technology provider)
 Teletel (Validation and demonstration activities)
 Laas/Cnrs + Airbus (External security experts)

 Duration: < 2 years



Study Objectives
 Objectives

 Define operational scenarios w.r.t. Avionics TSP WG
 Establish requirements for the identified scenarios
 Select/develop a Separation Kernel
 Bench/validate the selected Separation Kernel
 Demonstrate security requirements implementation
 Gain experience in reaching high EAL/comparison with Category 

B software validation techniques

 End products/Outputs
 Security Specification based on SKPP
 Validation platforms
 Tested and validated Security Kernels
 Demonstrator and performance measurements



Security Concerns (1/2)
 SW Trends in Space

 Security requirements (e.g. in commercial applications)
 SW developed by third party / use of COTS
 Operation of Space platform shared by various entities
 Use of low-cost service
 Downgrading of data quality

 Reference scenarios
 Multi-use missions
 Payloads from different stakeholders
 Integrated Modular Avionics

 (i.e. communalization of hardware resources
among several sub-systems of different
criticality / confidence such as
payload/equipment/OBSW)



Security Concerns (2/2)
 Security objectives

 Safe boot (no corruption of boot sequence or detection)

 Data confidentiality/integrity/authentication

 Observability

 Compatibility with operational phases (e.g. FDIR, maintenance)

 Control of resources (including CPU time, RAM, I/O, devices)

 Prevent from error propagation, data leaks, covert/side channels

 Security Threats

 Tampering with software (malware injection)

 Equipment/Software malfunction

 Saturation of the information system

 Unauthorized use of equipment

 Corruption or interception of data (i.e. encryption keys)

 Illegal processing + abuse/forcing of rights 

 Error injection + denial of service



Astrium Study Overview
Focus on Security Specification and TOE Validation

• Security specification for Space greatly inherit 
from SKPP.
• Target Of Evaluation: XtratuM hypervisor (UPV)
• Maximization of automatic testing: 75% fully or mainly automated
• Validation methodology and EAL

– Test (65%) + Review of code/design (45%)
– Test and Vulnerability Assessment compatible with MIDDLE ASSURANCE 

LEVEL (EAL4+)

53%40%

2% 5%
Reused
Specialized
Removed
Added

Protocol Validation System: connected through SpW links to a 
bench (PC) that simulates ground TC/TM, equipments …

Integrator 
responsibility (HW 
coupling / security 

vulnerabilities)

Shared 
responsibilities

Integrator 
responsibility (HW 
coupling / security 

vulnerabilities)

Shared 
responsibilities

ASTRIUM Demonstrator :
• PF Applications Partitions with 
common communication bus
• Payloads Applications Partitions 
with specific communication bus



Astrium Demonstrator 
Focus on Performances Results

Fully 
secured 
design

Partially secured 
design (no time 
confinement)

Current (not 
secured)

IPC

Several OS Fully 
secured 
design

Partially secured 
design (no time 
confinement)

Current (not 
secured)

Three contributions to performances:
• The Secured Partitioned Architecture (design choices)
• The Partitioning Kernel (XtratuM)
• Use of Partitioning mechanisms (e.g. I/O register hypercall VS direct mapping)

Foreseen improvements:
• Replace hypercall I/O 

register access with direct 
mapping  53µs/call

• replace IPC with shared 
memory (I/O)  110µs/KB

127.28 Mbps44.85 Mbps19.82 Mbps
Max Throughput 

in each direction

Non- partitioned

architecture (zero 
copy)

Space – Partitioned

Architecture (with 
copy)

Full Partitioned

architecture
I/O Throughput

127.28 Mbps44.85 Mbps19.82 Mbps
Max Throughput 

in each direction

Non- partitioned

architecture (zero 
copy)

Space – Partitioned

Architecture (with 
copy)

Full Partitioned

architecture
I/O Throughput



SciSys Study Overview
 Dual-use EO mission with two payloads

 One producing confidential data

 Partitioned system using 6 partitions, supported:
 PUS-based data handling system
 Software maintenance
 FDIR
 I/O

 Using SYSGO PikeOS on LEON3 with MMU

 RTEMS and POSIX guest OSs used
 Simulated spacecraft using modified ESA ATB and TSIM

 Exercised PikeOS in a realistic space context

 Provided indicative performance results



SciSys Demonstrator and Results

 Demonstrator showed that use of partitioning technology with 
onboard software is feasible and has many advantages

 Highlights many issues to consider from architectural design 
stage onwards

 I/O: No interrupts, no DMA, partition schedule coupling with 
I/O schedule

 FDIR: Can be highly trusted, (semi-) centralised approach 
used in this case

 Maintenance: Highly trusted
 Performance seems acceptable in testing

 Major performance limitations hardware-related



TSP and Multi-Core:
Strategies and Benefits

 Partitioning similar in principle to a distributed system
 With additional design constraints

 Partitioning/multi-core is a logical and powerful
combination

 Designing for partitioning is a good way to move to a 
multi-core system

 Partitions could be assigned to cores statically or 
dynamically (AMP vs SMP)
 Static assignment preferred

 Permits load balancing
 Partition-core assignment could be changed without a 

full re-validation



TSP and Hardware

 Back to first principles...

 Two types of system resources
 Atomic (indivisible) resources e.g. processor
 Non-atomic (divisible) resources e.g. memory

 Non-atomic resources can be divided up
 Spatial partitioning
 Protected by MMU

 Atomic resources must be multiplexed in time
 Temporal partitioning
 Utilising timer interrupt
 ”Protected” by hypervisor software



Single-Core Temporal Partitioning

Processor Core

MemoryMemory Interface

I/O Device

SoC Bus

Memory Bus

Space
Partitioning

Time
Partitioning

 Processor core, SoC bus, all interfaces treated as 
a single resource

 Partitioned by timer interrupt + software



Single-Core I/O Handling Issues

 Interrupts
 Alter system timing and affect the schedule
 Hypervisor can trap interrupt to ensure system integrity
 Timing still affected = covert channel
 Interrupts not permitted in a secure system

 DMA

 Devices with DMA capability can access memory
 Memory accessed using physical addresses
 Unprotected access to memory
 Timing affected = loss of integrity + confidentiality
 DMA not permitted in a secure system

 Major loss of I/O performance



Multi-Core Hardware Issues

 Multi-core partitioning introduces resource contention

 Processor core and bus can no longer be treated as one 
resource

 Other cores affect timing on the bus
 Time slicing by processor not sufficient

 Bus access not regulated or protected
 Same problem as for DMA on single-core systems

 Unpartitioned atomic resource
 Difficult to validate for

 No guaranteed integrity = not safe
 No guaranteed confidentiality = not secure



Hardware Support for Partitioning

 Spatial partitioning for DMA devices can be solved by using an 
IOMMU
 Simple version avilable on SCOC3
 Full IOMMU in GRLIB and on LEON4

 For temporal partitioning time-based arbitration must be added 
to atomic resources
 SoC bus(es) using bus controller
 Interrupts using interrupt controller

 Temporal partitioning issues not considered by current hardware



SPARC/LEON-Specific Issues

 Cache handling
 Cache must be flushed on partition switch
 Gives predictable environment so no loss of integrity or 

confidentiality
 LEON3 cache does not store permissions
 Supervisor-mode cache contents available to user-mode partition 

code after hypervisor call
 Cache must be flushed after hypervisor call

 Register windowing

 Over/underflow interrupt must be handled by hypervisor
 Complete window set must be saved/restored on

partition switch



Recommendations

 Some clear points:
 Do provide IOMMUs but these are no use on their own

 Configurable schedule could be added to bus controller/arbiter

 Simple schedule based on credit of cycles
 Schedule slot detected based on MMU context ID

 Investigate possibility for handling register window over/underflow in 
partitions

 Limited hypervisor mode c.f. UltraSPARC

 Other points to be deeper analysed:
 Configurable schedule could be added to interrupt controller

 Bitmask indicating permission to raise an interrupt
 MMU context ID used again

 User/Supervisor mode permissions should be added to cache

 Support cache freeze on software trap (not just async trap)



Summary and Conclusions

 Two parallel studies conducted
 Grounded in realistic security needs

 Astrium study focussed on space security needs & validation

 SciSys study focussed on space-industry needs

 While demonstrated on two different platforms, both studies identified 
shortcomings in hardware support for secure partitioning

 Multi-core could be an excellent match for TSP but highlights 
hardware issues

 Recommend additional hardware support be considered

 Essential/mid-term: Schedule-based bus/interrupt arbitration

 Longer-term: Hypervisor mode



Backup Slides



Bus Arbiter Schedule Table

Context ID

Potential Bus Masters

Credit = number of cycles master may have the 
bus during this schedule period

On a multi-core system the arbiter schedule may need to 
be linked to/controlled by a single “master” or “root” core.

50



Interrupt Controller Schedule

Context ID

Potential Bus Masters

Bitmask entry:
1 = Interrupt permitted, 0 = Interrupt not permitted

On a multi-core system the arbiter schedule may need to 
be linked to/controlled by a single “master” or “root” core.

0


