Secure Partitioning and Multi-Core Processors

Thomas PAREAUD, Alain ROSSIGNOL EADS Astrium

Peter MENDHAM, Stuart FOWELL SciSys UK Ltd

"Securely Partitioning Spacecraft Computing Resources" studies

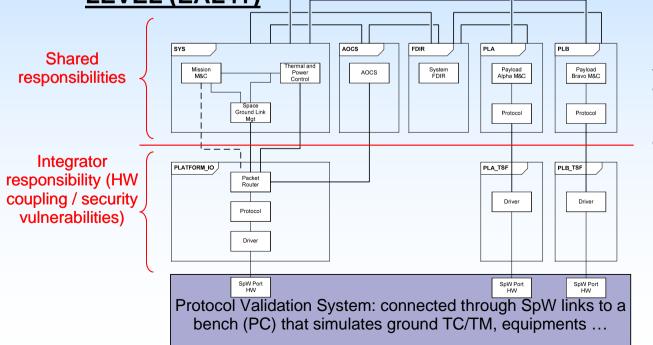
- Study lead by SciSys
 - SciSys (Prime contractor)
 - SYSGO (Technology provider)
 - Astrium (Operational Scenario Analysis)
 - University of York (External security experts)
- Study lead by Astrium
 - Astrium (Prime contractor)
 - Universitat Politècnica de València (Technology provider)
 - Teletel (Validation and demonstration activities)
 - Laas/Cnrs + Airbus (External security experts)
- Duration: < 2 years

Study Objectives

- Objectives
 - Define operational scenarios w.r.t. Avionics TSP WG
 - Establish requirements for the identified scenarios
 - Select/develop a Separation Kernel
 - Bench/validate the selected Separation Kernel
 - Demonstrate security requirements implementation
 - Gain experience in reaching high EAL/comparison with Category B software validation techniques
- End products/Outputs
 - Security Specification based on SKPP
 - Validation platforms
 - Tested and validated Security Kernels
 - Demonstrator and performance measurements

Security Concerns (1/2)

- SW Trends in Space
 - Security requirements (e.g. in commercial applications)
 - SW developed by third party / use of COTS
 - Operation of Space platform shared by various entities
 - Use of low-cost service
 - Downgrading of data quality
- Reference scenarios
 - Multi-use missions
 - Payloads from different stakeholders
 - Integrated Modular Avionics
 - (i.e. communalization of hardware resources among several sub-systems of different criticality / confidence such as payload/equipment/OBSW)

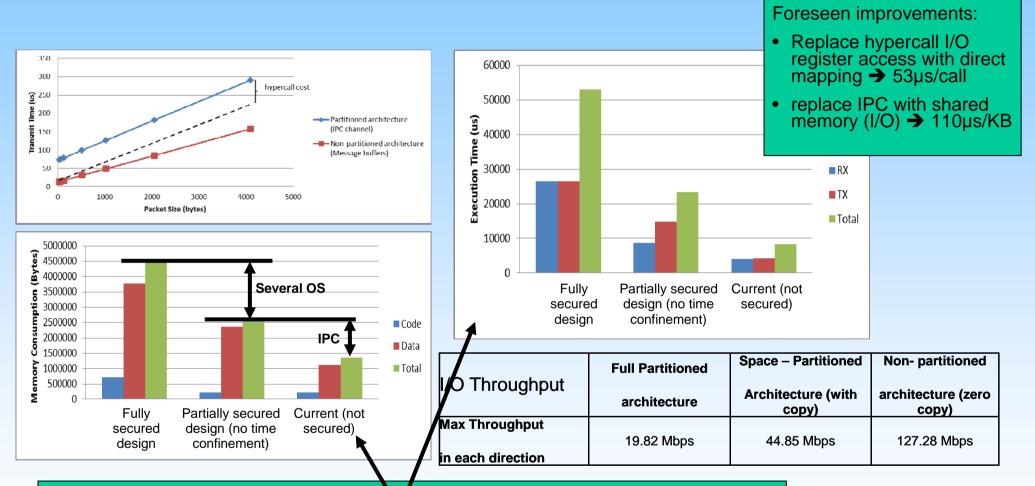

Security Concerns (2/2)

- Security objectives
 - Safe boot (no corruption of boot sequence or detection)
 - Data confidentiality/integrity/authentication
 - Observability
 - Compatibility with operational phases (e.g. FDIR, maintenance)
 - Control of resources (including CPU time, RAM, I/O, devices)
 - Prevent from error propagation, data leaks, covert/side channels
- Security Threats
 - Tampering with software (malware injection)
 - Equipment/Software malfunction
 - Saturation of the information system
 - Unauthorized use of equipment
 - Corruption or interception of data (i.e. encryption keys)
 - Illegal processing + abuse/forcing of rights
 - Error injection + denial of service

Astrium Study Overview Focus on Security Specification and TOE Validation

- Security specification for Space greatly inherit from SKPP.
- Target Of Evaluation: XtratuM hypervisor (UPV)
- Maximization of automatic testing: 75% fully or mainly automated
- Validation methodology and EAL
 - Test (65%) + Review of code/design (45%)
 - Test and Vulnerability Assessment compatible with <u>MIDDLE ASSURANCE</u> LEVEL (EAL4+)

ASTRIUM Demonstrator :


40%

PF Applications Partitions with common communication bus
Payloads Applications Partitions with specific communication bus

Astrium Demonstrator Focus on Performances Results

Three contributions to performances:

- The Secured Partitioned Architecture (design choices)
- The Partitioning Kernel (XtratuM)
- Use of Partitioning mechanisms (e.g. I/O register hypercall VS direct mapping)

SciSys Study Overview

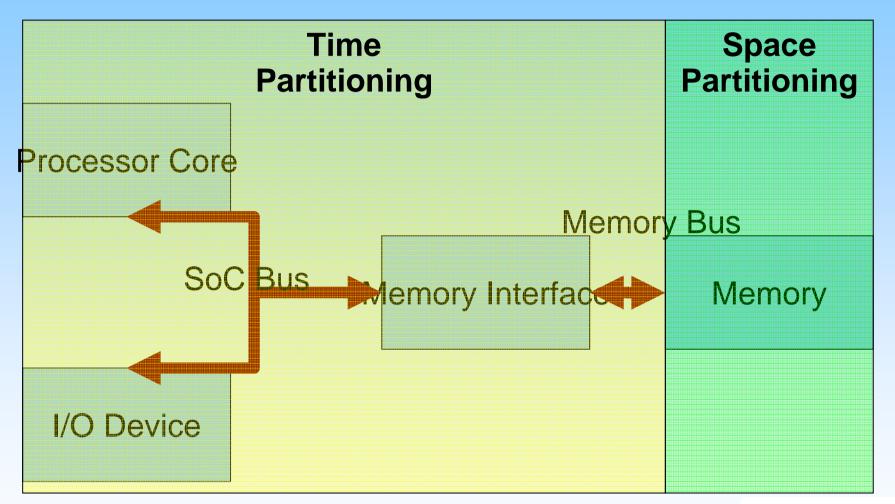
- Dual-use EO mission with two payloads
 - One producing confidential data
- Partitioned system using 6 partitions, supported:
 - PUS-based data handling system
 - Software maintenance
 - FDIR
 - I/O
- Using SYSGO PikeOS on LEON3 with MMU
 - RTEMS and POSIX guest OSs used
- Simulated spacecraft using modified ESA ATB and TSIM
- Exercised PikeOS in a realistic space context
- Provided indicative performance results

SciSys Demonstrator and Results

- Demonstrator showed that use of partitioning technology with onboard software is feasible and has many advantages
- Highlights many issues to consider from architectural design stage onwards
 - I/O: No interrupts, no DMA, partition schedule coupling with I/O schedule
 - FDIR: Can be highly trusted, (semi-) centralised approach used in this case
 - Maintenance: Highly trusted
- Performance seems acceptable in testing
- Major performance limitations hardware-related

TSP and Multi-Core: Strategies and Benefits

- Partitioning similar in principle to a distributed system
 - With additional design constraints
- Partitioning/multi-core is a logical and powerful combination
- Designing for partitioning is a good way to move to a multi-core system
- Partitions could be assigned to cores statically or dynamically (AMP vs SMP)
 - Static assignment preferred
- Permits load balancing
- Partition-core assignment could be changed without a full re-validation



TSP and Hardware

- Back to first principles...
- Two types of system resources
 - Atomic (indivisible) resources e.g. processor
 - Non-atomic (divisible) resources e.g. memory
- Non-atomic resources can be divided up
 - Spatial partitioning
 - Protected by MMU
- Atomic resources must be multiplexed in time
 - Temporal partitioning
 - Utilising timer interrupt
 - "Protected" by hypervisor software

Single-Core Temporal Partitioning

 Processor core, SoC bus, all interfaces treated as a single resource

Partitioned by timer interrupt + software

Single-Core I/O Handling Issues

Interrupts

- Alter system timing and affect the schedule
- Hypervisor can trap interrupt to ensure system integrity
- Timing still affected = covert channel
- Interrupts not permitted in a secure system
- DMA
 - Devices with DMA capability can access memory
 - Memory accessed using physical addresses
 - Unprotected access to memory
 - Timing affected = loss of integrity + confidentiality
 - DMA not permitted in a secure system
- Major loss of I/O performance

Multi-Core Hardware Issues

- Multi-core partitioning introduces resource contention
- Processor core and bus can no longer be treated as one resource
 - Other cores affect timing on the bus
- Time slicing by processor not sufficient
 - Bus access not regulated or protected
- Same problem as for DMA on single-core systems
 - Unpartitioned atomic resource
- Difficult to validate for
- No guaranteed integrity = not safe
- No guaranteed confidentiality = not secure

Hardware Support for Partitioning

- Spatial partitioning for DMA devices can be solved by using an IOMMU
 - Simple version avilable on SCOC3
 - Full IOMMU in GRLIB and on LEON4
- For temporal partitioning time-based arbitration must be added to atomic resources
 - SoC bus(es) using bus controller
 - Interrupts using interrupt controller
- Temporal partitioning issues not considered by current hardware

SPARC/LEON-Specific Issues

Cache handling

- Cache must be flushed on partition switch
- Gives predictable environment so no loss of integrity or confidentiality
- LEON3 cache does not store permissions
- Supervisor-mode cache contents available to user-mode partition code after hypervisor call
- Cache must be flushed after hypervisor call
- Register windowing
 - Over/underflow interrupt must be handled by hypervisor
 - Complete window set must be saved/restored on partition switch

Recommendations

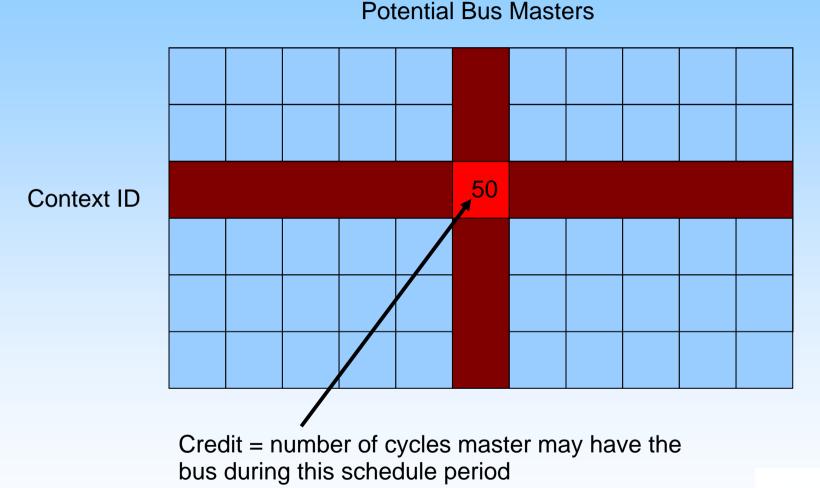
• Some clear points:

- Do provide IOMMUs but these are no use on their own
- Configurable schedule could be added to bus controller/arbiter
 - Simple schedule based on credit of cycles
 - Schedule slot detected based on MMU context ID
- Investigate possibility for handling register window over/underflow in partitions
- Limited hypervisor mode c.f. UltraSPARC

• Other points to be deeper analysed:

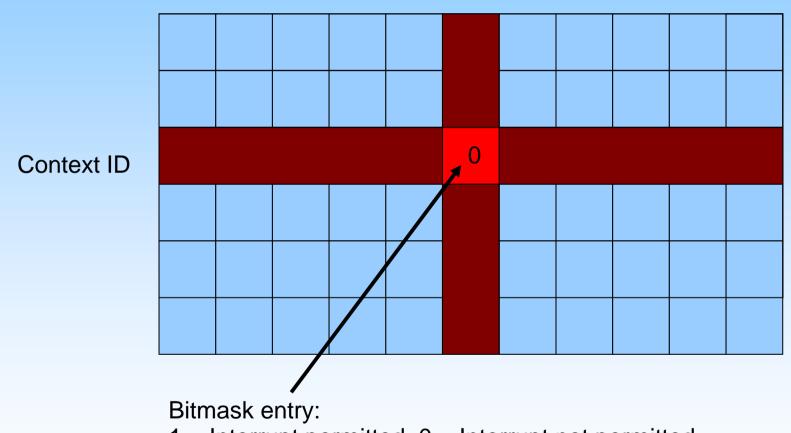
- Configurable schedule could be added to interrupt controller
 - Bitmask indicating permission to raise an interrupt
 - MMU context ID used again
- User/Supervisor mode permissions should be added to cache
- Support cache freeze on software trap (not just async trap)

Summary and Conclusions


- Two parallel studies conducted
 - Grounded in realistic security needs
- Astrium study focussed on space security needs & validation
- SciSys study focussed on space-industry needs
- While demonstrated on two different platforms, both studies identified shortcomings in hardware support for secure partitioning
- Multi-core could be an excellent match for TSP but highlights hardware issues
- Recommend additional hardware support be considered
- Essential/mid-term: Schedule-based bus/interrupt arbitration scisy
- Longer-term: Hypervisor mode

Backup Slides

Bus Arbiter Schedule Table



On a multi-core system the arbiter schedule may need to be linked to/controlled by a single "master" or "root" core.

Interrupt Controller Schedule

Potential Bus Masters

1 =Interrupt permitted, 0 =Interrupt not permitted

On a multi-core system the arbiter schedule may need to be linked to/controlled by a single "master" or "root" core.

