
Secure Partitioning and Multi-
Core Processors

Thomas PAREAUD, Alain ROSSIGNOL
EADS Astrium

Peter MENDHAM, Stuart FOWELL
SciSys UK Ltd

“Securely Partitioning Spacecraft
Computing Resources” studies

 Study lead by SciSys
 SciSys (Prime contractor)
 SYSGO (Technology provider)
 Astrium (Operational Scenario Analysis)
 University of York (External security experts)

 Study lead by Astrium
 Astrium (Prime contractor)
 Universitat Politècnica de València (Technology provider)
 Teletel (Validation and demonstration activities)
 Laas/Cnrs + Airbus (External security experts)

 Duration: < 2 years

Study Objectives
 Objectives

 Define operational scenarios w.r.t. Avionics TSP WG
 Establish requirements for the identified scenarios
 Select/develop a Separation Kernel
 Bench/validate the selected Separation Kernel
 Demonstrate security requirements implementation
 Gain experience in reaching high EAL/comparison with Category

B software validation techniques

 End products/Outputs
 Security Specification based on SKPP
 Validation platforms
 Tested and validated Security Kernels
 Demonstrator and performance measurements

Security Concerns (1/2)
 SW Trends in Space

 Security requirements (e.g. in commercial applications)
 SW developed by third party / use of COTS
 Operation of Space platform shared by various entities
 Use of low-cost service
 Downgrading of data quality

 Reference scenarios
 Multi-use missions
 Payloads from different stakeholders
 Integrated Modular Avionics

 (i.e. communalization of hardware resources
among several sub-systems of different
criticality / confidence such as
payload/equipment/OBSW)

Security Concerns (2/2)
 Security objectives

 Safe boot (no corruption of boot sequence or detection)

 Data confidentiality/integrity/authentication

 Observability

 Compatibility with operational phases (e.g. FDIR, maintenance)

 Control of resources (including CPU time, RAM, I/O, devices)

 Prevent from error propagation, data leaks, covert/side channels

 Security Threats

 Tampering with software (malware injection)

 Equipment/Software malfunction

 Saturation of the information system

 Unauthorized use of equipment

 Corruption or interception of data (i.e. encryption keys)

 Illegal processing + abuse/forcing of rights

 Error injection + denial of service

Astrium Study Overview
Focus on Security Specification and TOE Validation

• Security specification for Space greatly inherit
from SKPP.
• Target Of Evaluation: XtratuM hypervisor (UPV)
• Maximization of automatic testing: 75% fully or mainly automated
• Validation methodology and EAL

– Test (65%) + Review of code/design (45%)
– Test and Vulnerability Assessment compatible with MIDDLE ASSURANCE

LEVEL (EAL4+)

53%40%

2% 5%
Reused
Specialized
Removed
Added

Protocol Validation System: connected through SpW links to a
bench (PC) that simulates ground TC/TM, equipments …

Integrator
responsibility (HW
coupling / security

vulnerabilities)

Shared
responsibilities

Integrator
responsibility (HW
coupling / security

vulnerabilities)

Shared
responsibilities

ASTRIUM Demonstrator :
• PF Applications Partitions with
common communication bus
• Payloads Applications Partitions
with specific communication bus

Astrium Demonstrator
Focus on Performances Results

Fully
secured
design

Partially secured
design (no time
confinement)

Current (not
secured)

IPC

Several OS Fully
secured
design

Partially secured
design (no time
confinement)

Current (not
secured)

Three contributions to performances:
• The Secured Partitioned Architecture (design choices)
• The Partitioning Kernel (XtratuM)
• Use of Partitioning mechanisms (e.g. I/O register hypercall VS direct mapping)

Foreseen improvements:
• Replace hypercall I/O

register access with direct
mapping 53µs/call

• replace IPC with shared
memory (I/O) 110µs/KB

127.28 Mbps44.85 Mbps19.82 Mbps
Max Throughput

in each direction

Non- partitioned

architecture (zero
copy)

Space – Partitioned

Architecture (with
copy)

Full Partitioned

architecture
I/O Throughput

127.28 Mbps44.85 Mbps19.82 Mbps
Max Throughput

in each direction

Non- partitioned

architecture (zero
copy)

Space – Partitioned

Architecture (with
copy)

Full Partitioned

architecture
I/O Throughput

SciSys Study Overview
 Dual-use EO mission with two payloads

 One producing confidential data

 Partitioned system using 6 partitions, supported:
 PUS-based data handling system
 Software maintenance
 FDIR
 I/O

 Using SYSGO PikeOS on LEON3 with MMU

 RTEMS and POSIX guest OSs used
 Simulated spacecraft using modified ESA ATB and TSIM

 Exercised PikeOS in a realistic space context

 Provided indicative performance results

SciSys Demonstrator and Results

 Demonstrator showed that use of partitioning technology with
onboard software is feasible and has many advantages

 Highlights many issues to consider from architectural design
stage onwards

 I/O: No interrupts, no DMA, partition schedule coupling with
I/O schedule

 FDIR: Can be highly trusted, (semi-) centralised approach
used in this case

 Maintenance: Highly trusted
 Performance seems acceptable in testing

 Major performance limitations hardware-related

TSP and Multi-Core:
Strategies and Benefits

 Partitioning similar in principle to a distributed system
 With additional design constraints

 Partitioning/multi-core is a logical and powerful
combination

 Designing for partitioning is a good way to move to a
multi-core system

 Partitions could be assigned to cores statically or
dynamically (AMP vs SMP)
 Static assignment preferred

 Permits load balancing
 Partition-core assignment could be changed without a

full re-validation

TSP and Hardware

 Back to first principles...

 Two types of system resources
 Atomic (indivisible) resources e.g. processor
 Non-atomic (divisible) resources e.g. memory

 Non-atomic resources can be divided up
 Spatial partitioning
 Protected by MMU

 Atomic resources must be multiplexed in time
 Temporal partitioning
 Utilising timer interrupt
 ”Protected” by hypervisor software

Single-Core Temporal Partitioning

Processor Core

MemoryMemory Interface

I/O Device

SoC Bus

Memory Bus

Space
Partitioning

Time
Partitioning

 Processor core, SoC bus, all interfaces treated as
a single resource

 Partitioned by timer interrupt + software

Single-Core I/O Handling Issues

 Interrupts
 Alter system timing and affect the schedule
 Hypervisor can trap interrupt to ensure system integrity
 Timing still affected = covert channel
 Interrupts not permitted in a secure system

 DMA

 Devices with DMA capability can access memory
 Memory accessed using physical addresses
 Unprotected access to memory
 Timing affected = loss of integrity + confidentiality
 DMA not permitted in a secure system

 Major loss of I/O performance

Multi-Core Hardware Issues

 Multi-core partitioning introduces resource contention

 Processor core and bus can no longer be treated as one
resource

 Other cores affect timing on the bus
 Time slicing by processor not sufficient

 Bus access not regulated or protected
 Same problem as for DMA on single-core systems

 Unpartitioned atomic resource
 Difficult to validate for

 No guaranteed integrity = not safe
 No guaranteed confidentiality = not secure

Hardware Support for Partitioning

 Spatial partitioning for DMA devices can be solved by using an
IOMMU
 Simple version avilable on SCOC3
 Full IOMMU in GRLIB and on LEON4

 For temporal partitioning time-based arbitration must be added
to atomic resources
 SoC bus(es) using bus controller
 Interrupts using interrupt controller

 Temporal partitioning issues not considered by current hardware

SPARC/LEON-Specific Issues

 Cache handling
 Cache must be flushed on partition switch
 Gives predictable environment so no loss of integrity or

confidentiality
 LEON3 cache does not store permissions
 Supervisor-mode cache contents available to user-mode partition

code after hypervisor call
 Cache must be flushed after hypervisor call

 Register windowing

 Over/underflow interrupt must be handled by hypervisor
 Complete window set must be saved/restored on

partition switch

Recommendations

 Some clear points:
 Do provide IOMMUs but these are no use on their own

 Configurable schedule could be added to bus controller/arbiter

 Simple schedule based on credit of cycles
 Schedule slot detected based on MMU context ID

 Investigate possibility for handling register window over/underflow in
partitions

 Limited hypervisor mode c.f. UltraSPARC

 Other points to be deeper analysed:
 Configurable schedule could be added to interrupt controller

 Bitmask indicating permission to raise an interrupt
 MMU context ID used again

 User/Supervisor mode permissions should be added to cache

 Support cache freeze on software trap (not just async trap)

Summary and Conclusions

 Two parallel studies conducted
 Grounded in realistic security needs

 Astrium study focussed on space security needs & validation

 SciSys study focussed on space-industry needs

 While demonstrated on two different platforms, both studies identified
shortcomings in hardware support for secure partitioning

 Multi-core could be an excellent match for TSP but highlights
hardware issues

 Recommend additional hardware support be considered

 Essential/mid-term: Schedule-based bus/interrupt arbitration

 Longer-term: Hypervisor mode

Backup Slides

Bus Arbiter Schedule Table

Context ID

Potential Bus Masters

Credit = number of cycles master may have the
bus during this schedule period

On a multi-core system the arbiter schedule may need to
be linked to/controlled by a single “master” or “root” core.

50

Interrupt Controller Schedule

Context ID

Potential Bus Masters

Bitmask entry:
1 = Interrupt permitted, 0 = Interrupt not permitted

On a multi-core system the arbiter schedule may need to
be linked to/controlled by a single “master” or “root” core.

0

