
National Aeronautics and Space Administration

Fault Management at JPL: Past,
Present and Future
Fault Management at JPL: Past,
Present and Future

ADCSS 2011

John Day & Michel Ingham
Jet Propulsion Laboratory, California Institute of Technology

ADCSS 2011

John Day & Michel Ingham
Jet Propulsion Laboratory, California Institute of Technology

Copyright 2011, California Institute of Technology. Government sponsorship acknowledged.

Outline

• Position Statement

• Fundamentals

• Past Experience and Lessons Learned

• Current State of Practice

• Future Evolution

• Summary

2

FUNDAMENTALS
POSITION STATEMENT

3

Position Statement

At JPL and across the spacecraft engineering community, the
development of robust FDIR* capabilities has been more of an
“art” than a “science”.
We posit that there is significant benefit to be gleaned from
applying greater rigor and a more systematic approach to
FDIR system development, and that the burgeoning field of
Model-Based Systems Engineering can provide useful
techniques and tools to help us in this endeavour.

* Note: In this package, we use the somewhat more general terms “Fault
Management” and “Fault Protection”. There are subtle distinctions between
each of these terms, which we can discuss offline if there is interest.

4

FUNDAMENTALS
FUNDAMENTALS

5

What is Fault Protection?

• As used and applied at JPL, Fault Protection is both:
– A specific SE discipline (similar to EEIS or mission planning), whose

activities are separately scheduled and tracked, and
– The elements of a system that address off-nominal behavior

• “Fault Management” is becoming the preferred term within NASA
– Fault Protection is functionally equivalent to “Fault Management*”, but

suggests a flight system bias

• Focused on the flight system, Fault Protection includes
– Flight system fault detection and response
– Ground-based failure diagnosis and recovery
– Ground-based contingency planning and action

6* Per current draft of NASA-HDBK-1002, “Fault Management Handbook”; however, the definition remains in work…

Fault Protection Scope

7

Fault
Protection

Fault
Protection

Flight System Fault Tolerance Design Strategies include:
1) Graceful Degradation
2) Application of Redundancy

- physical
- functional

3) Fault Containment Regions
- limit propagation

4) FDIR

In-Flight Examples include:
1) Robust Design Features

- Simple Design (e.g. fixed solar array or HGA)
- conservative design practices and performance

margins
2) On-Board Autonomy

- (e.g. attitude constraint checking).
3) Post-Launch Operations Processes and Procedures

- These include the use of Flight Rules and executing
commands on a spacecraft simulation test-bed.

For Example:
1) EDAC
2) FPGA TMR
3) Active Redundancy

For Example:
1) OV/UV Detect Circuits
2) Watchdog Timers
3) On-Chip Built-in-Tests
4) Memory scrubbing

For Example:
1) Sensor Threshold / Persistence
2) Diagnosis / Response
3) Re-plan & Continue Activity

For Example:
1) Telemetry Alarm Checking
2) Telemetry Trending & Analysis
3) Contingency Plans & Procedures

Fault Avoidance Fault Tolerance

Fault Masking FDIR

Ground-based
FDIR

Flight HW
FDIR

Flight SW
FDIR

PAST EXPERIENCE IN DEEP SPACE FAULT PROTECTION
PAST EXPERIENCE

8

Missions and Capabilities

• The set of missions historically flown by JPL has led to the
development of robust autonomous FP capabilities
– JPL FP designs and processes formed by experience and lessons learned

(some painfully)

• FP capability fielded on Viking and Voyager, gradually increasing in
scale to significant levels of complexity and autonomy
– Cassini SOI is a good example of autonomous FP capability

• MSL represents the most complex FP system JPL has built, with
1097 system-level monitors and 38 system-level responses (plus
on the order of 800 local responses)

9

Typical Constraints and Driving Requirements

• Operate with Limited Ground contact
– Extended periods with no planned contact (1 to 4 weeks)
– Planned contact periods may be short (1 to 2 hours)
– Ground may not show for planned contacts (5% to 10%)
– Large one-way light times (minutes to hours)
– Low downlink data rates (10 to 40 bps)

• Protect fragile elements of systems
• Leverage existing flight system components
• Protect/complete critical activities

– Orbit insertion, entry/descent/landing, irreversible deployments
• Long mission life

– Survive without maintenance for primary missions lasting 5-11 years
• Harsh environments

– TID of 100 krad to 4 mrad

10

Fault Protection “Family Tree*”

11*See reference [16], “OCE FSW Complexity Study, Appendix F.

FP “Family Tree” – Detail

12

In-Flight Experience with Fault Protection

• JPL missions have suffered relatively few permanent faults
– Flight hardware for deep space missions has to be (and has been) very reliable

• Fault protection activity during our missions has been most
commonly caused by:
– Operator errors
– Fundamental design flaws, including software design flaws
– False alarms due to unnecessarily tight thresholds
– Unforeseen transient behavior due to interactions and/or variations in the operating

environment, SEUs, etc.

• Many examples where fault protection responded appropriately
to transient behavior that was unexpected
– Galileo (1990 - 1995): Despun Power Bus reset caused by debris shorts
– Magellan (1990 - 1992): Software flaw that caused heartbeat termination
– Cassini (1993): Attitude estimator transient during backup Star Tracker checkout
– MER Spirit Rover (2005): Potato-sized rock jammed in right rear wheel
– Dawn (2008): Cosmic ray upset of attitude control electronics
– Kepler (2009): Undervoltage due to unexpected power interactions at launch 13

PAST EXPERIENCE IN DEEP SPACE FAULT PROTECTION
PRESENT

14

Fault Protection System Engineering

• On JPL flight projects, Fault Protection is a broad-based systems
engineering task, and includes components of:
– Mission Engineering

• Timeline, Nominal, Critical and Time-Critical Activities
– Project System Engineering

• Systems Architecture
– Flight System Engineering

• Failure Analysis
• Requirement/Design Flow-down to FSW, Subsystem SE, Reliability
• Design, Test, and Operation of On-Board autonomous Fault Detection, Isolation, and Response logic

responsible for maintaining vehicle health and safety.
– Hardware Redundancy is often included

– Mission Operations
• Contingency Planning and Anomaly Resolution
• Flight System Data Analysis and trending, state tracking, simulation

– Mission Assurance
• Reliability Analysis, Parts Qualification, Environments etc.

• The FP effort is often managed like a ‘spacecraft subsystem’.
– Reviews, budget/schedule (WBS), specific work products
– Keeps effort from being lost or or mismanaged

15

Characteristics of JPL FP Approach

• Single-failure tolerance (SFT)
– No single point of failure will result in loss of mission
– For some missions, waived in part or whole (e.g., single-string)

• Limited use of reliability data
– JPL does not use reliability estimates as a basis for meeting single-

failure tolerance requirements
– Reliability estimates used for lifetime calculations
– Reliability estimates used as supporting rationale in SFT waivers

• Maintain failure tolerance after first failure
– Clear temporary failures
– Maintain failure tolerance in safing modes
– Robustness to multiple orthogonal failures

16

FP Across the Project Lifecycle

17

Architecture

Requirements

Analysis

Verify and Validate

Conduct Reviews

PHASES A/B
Concept Development
Preliminary Design

PMSRMCR/TMC

Pre-PHASE A
Formulation/Proposal

PDR

PHASES C/D
Detailed Design
Build, Test and Launch

PHASE E
Operations

CDR MRR CERR

Initial Flight
System Architecture
Initial Flight
System Architecture

Develop Top-level
Requirements
Develop Top-level
Requirements

System-level Risk AnalysesSystem-level Risk Analyses

Develop FP
Architecture
Develop FP
Architecture

Develop Functional
Requirements
Develop Functional
Requirements

Apply Systems Analysis
Results to Design Req’ts
Apply Systems Analysis
Results to Design Req’ts

Support Testbed and
Simulation Development
Support Testbed and
Simulation Development

Develop Detailed Req’tsDevelop Detailed Req’ts

Identify/Develop Fault
Test Cases
Identify/Develop Fault
Test Cases

Support Fault TestingSupport Fault Testing

Support Req’t VerificationSupport Req’t Verification

Support System
Validation
Support System
Validation

FP Ops activitiesFP Ops activities

*See reference [9], “Fault Protection System Engineering: Tasks and Products Across the Project Lifecycle” for more detail.

FP PDR FP CDR

FM Completeness: Requires Top-Down and
Bottom-up Analyses

determine
fault set

determine set
of failure
effects

determine set
of failure
scenarios

list of local fault responses

analyze set of
failure

scenarios

Develop
necessary

FDIR

determine
system

functions

determine
states

associated with
each function

determine
acceptable

ranges

analyze set of
success

scenarios

for each failure scenario,
assess acceptability

(FDIR vs. FEPT)

Top-down
assessment

Bottom-up
assessment

FDIR necessary to maintain
acceptable functionality
through all mission phases

FDIR necessary to maintain
acceptable functionality for each

identified failure scenario

for each failure effect,
assess relevant mission

phases/activities; add
identified hazards

for each failure
mode, identify failure

effects

FMEA, FTA

functional analysis,
FTA, HA, IHA

identify state(s) associated
with each function

determine the acceptable values of
each state for relevant mission
phases/activities (goals);
acceptable values may change
over course of mission

for each mission phase/activity,
determine FDIR necessary to
maintain acceptable function

18

Relevant Representations and Relationships

• Success Trees
• Represent system functions and functional

decomposition
• Conditions for success; "light" side

• Fault Trees
• Represent system functions and paths to failure of

top event
• Conditions for failure; "dark" side

• Directed graphs
• Represent components and connections/interfaces
• Modeling of physical and logical connections

enables formal modeling of failure effect
propagation

• Failure Modes and Effects Analyses (FMEA)
• Description of the failure modes (mechanisms) and

the immediate failure effect
• Modeled failure effect propagation enables formal

and complete development of all failure effects
• Event Sequences

• Describes system functionality as a function of time
• Provides "triggers" to enable/disable elements of

directed graph representation
• State Machines (Not Shown)

• Necessary to assess sequencing of system states,
both nominal and off-nominal

22
19

Challenges for Current FM Approach

• No underlying, unifying model for various FM representations
and bottom-up/top-down analyses
– Difficult to be confident that the job is “complete” (enough)

• Show quantitative benefits to support engineering trades
– Developing approaches to show value of additional HW and SW
– Especially - assessing value of applying HW redundancy

• Accurately estimate and control costs
– Better define products and processes, and process metrics

• Perform adequate V&V
– Large failure space makes comprehensive testing infeasible
– Working on tools and approaches to better verify and validate

• Write relevant, decomposable requirements
– Needs to be more than “Do FP”
– Better integration with SE requirements process

20

FUTURE EVOLUTION
FUTURE EVOLUTION

21

Directions of Current Research (1)

• Advancing the “Science” of Fault Management
– Formalization of concepts and terminology
– Development of unified Theory of FM, leveraging prior work on state

analysis and functional analysis

• Improved Fault Management design process
– Integration of FM design into “mainline” systems engineering activities
– Incorporation of top-down design approaches into sys eng process
– Application of Model-Based Engineering (MBE) techniques to document

FM design and enable difficult (or previously impossible) analyses 22

Fault Protection

Failure Prevention Failure Mitigation Failure Tolerance

Fault Avoidance
Failure Prediction

Fault Masking
Failure Recovery Goal Modification

Detect

Classes

Approaches

FP Functions Locate Diagnose Isolate Recover

FP Allocations

Flight System Ground System

HW SW HW SW Operators

approaches implemented by
FP operational function

FP functions allocated to elements of
flight and ground systems

note: for a given failure, there
are 3 possible ways of
dealing with it…

Contain

Directions of Current Research (2)

• Resilient system architectures
– Development of system architectures that are inherently capable of fault

avoidance, tolerance and recovery, rather than fault protection architecture
as a “bolt-on” to nominal execution architecture.
• Integration of fault protection within the nominal control loop
• Continued migration of “cognizance” from operators to spacecraft

• Advanced diagnosis & recovery algorithms
– Leverages recent advances in model-based reasoning, hybrid

(discrete/continuous) system modeling, discrete-event systems and
Integrated System Health Management (ISHM) communities

– Challenges: modeling expressivity, coherent integration of multiple
representations and techniques, and scalability to large-scale systems 23

Fault
Protection

Fault
Protection

Fault
Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault
Protection

Sequence
Execution

Goal Sequencer
(Model-based Control Program)

State
Plant

S
Model-based Executive

Msmts Cmds

Goals on StateEstimated State

Directions of Current Research (3)

• Formal methods, automated analysis, autocoding
– System/software architecture specification languages (e.g., AADL, ACME) ,

MBE, and model-driven software development provide greater opportunity for
formal V&V techniques, automated analysis and automated code generation

– Building up “libraries” of code-generation patterns for use in future missions
• Fault management design environments

– Development of model transformation technologies to integrate general-
purpose MBE languages (e.g., SysML) & tools with FM-specific design
environments (e.g., TEAMS, SAFIRE)

– Eventual automation of generation of FM analysis artifacts (e.g., FT, FMECA)

24

Analysis – fault trees

Analysis – FMECAs

Behavior – success trees
Flight System Model

Summary

Past:
•JPL has a long history of developing, deploying and operating effective Fault
Management capabilities on its spacecraft
•Our FM capabilities have evolved as our missions have become increasingly
ambitious and complex, but this evolution was not rigorously “architected”
over time

Present:
•JPL Fault Protection philosophies and goals are relatively straightforward
and generally consistent from project to project
•FP engineers end up knowing how the Flight System really works (and how it
doesn’t work), better than anyone
•Our current practice faces significant challenges due to growing complexity

Future:
•JPL is working with the FM Community to advance the state of the art and
practice, to enable future classes of missions

– Formalize theory, improve and standardize approaches and processes, develop tools
(move from an “art” to a science)

– Increase our collective ability to field safe and reliable systems
– Enable formulation and development of more complex/capable systems

25

Opportunities to Continue the Discussion

• 2nd NASA Fault Management Workshop (New Orleans,
Louisiana; April/May 2012)
– By invitation only
– Contact Dr. Lorraine Fesq for more information:

lorraine.m.fesq@jpl.nasa.gov

• Fault Management sessions at AIAA Infotech@Aerospace
2012 (Anaheim, California; June 18-21, 2012)
– Call for Papers: www.aiaa.org/events/I@A
– Abstracts due November 22, 2011

26

mailto:lorraine.m.fesq@jpl.nasa.gov
http://www.aiaa.org/events/I@A

BACKUP

27

Fault Protection Context

Time-Critical Activity/
Deployments

Critical Activity/
TCM

Critical
Activity/
Launch

Critical Activity/
Orbit Insertion/EDL

On-Board FP Autonomy

Mission Timeline

Flight Hardware Layer

Flight Software Layer

Hardware Interface

Application Specific (or Subsystem-specific) Functions
System Functions

Redundancy
Cross-Strapping

Flight System
FSW

Ground FDIR
* Monitor/Trend
* Diagnosis/Recovery
* Contingency Plans / Procedures
* Test-bed/Simulation

Flight System FDIR
* FSW Layers
* Hardware Layer

Surface
Operations

Orbital
Operations

28

Ground
System

A Few FM Principles

29

• Respond only to unacceptable conditions
• Avoid hair triggers and retriggering
• Tolerate false alarms
• Make parameters commandable
• Corroborate before severe responses
• Ensure commandability and long term safety
• Preserve consumables and critical data
• Log events and actions

NASA SMD FM HB: Core and System Terms

• Core Terms
• Degradation: The decreased performance of intended function.
• Anomaly: The unexpected performance of intended function.
• Failure: The unacceptable performance of intended function.
• Fault: A physical or logical cause, which explains a failure.
• Root Cause: In the chain of events leading to a failure, the first fault or environmental cause

used to explain the existence of the failure.

• System Terms
• System: A combination of interacting elements organized to achieve one or more stated

purposes.
• State: The value of a set of physical or logical state variables at a specified point in time.
• Behavior: The temporal evolution of a state.
• Function: The process that transforms an input state to an intended output state.
• Control Error: The deviation between the estimated state and the ideal intended state.
• Nominal: The state of the system when the output state vector matches the intentions of the

designer and/or operator.
• Expectation: The most likely predicted state or behavior.

6
30

Terminology Concept Diagram

function(s)

failurefault

may be, from the
perspective of a
prior event in a
causal chain, a

is explained by

state

system

Has a set of

anomaly
is an
unexpected

is the unacceptable
performance of intended

behavioras a function of
time is

OR

OR

an incorrect

which requires no
further explanation
is a

objective(s)

implement

model(s)

OR

environment

is explained by

Has a

describe
expectedused to select

lower-level

error

AND

is difference
from ideal

describe
intended

used to develop

control

is the unexpected
performance of intended

is an unacceptable

may be
invoked as a

root cause

31

Fault – Failure Recursion

7
32

Progression of Anomalous/Failed States

Expected /
Not
Anomalous

Unexpected /
Anomalous

Not Failed /
Acceptable

Failed /
Unacceptable

12, 3
a

b

d, ii

Anomaly, no Failure
1) current value of state reaches an unexpected

value
2) review of system data indicates that

model/expectation is invalid, and state is
expected (expectations changed) [e.g., noise in
RF link due to un-modeled effect]

• model reviewed and parameters adjusted until
model predicts current behavior (e.g., if RWA
unhealthy, will have larger attitude errors)

• review of system data indicates that this is an
unacceptable value (indicative of a failure; the
goal is adjusted)

4

Anomaly, with Failure
a) current value of state unexpectedly reaches an

unacceptable value
b) model reviewed and parameters adjusted until

model predicts current behavior (e.g., if IMU1
unhealthy, will have attitude failure)

• review of system data indicates that
model/expectation is invalid, and state is
acceptable (expectations changed)

• recover intended functionality by restoring state
to acceptable value and/or changing functional
goal

Failure, no Anomaly
i. expected condition results in failure
ii. recover intended functionality by restoring state

to acceptable value and/or changing functional
goal

c

i

33

detectdetect

diagnosediagnose

adjustadjust

decidedecide

respondrespondobject-
ives

expect-
ations

expect-
ations

system
state

system
state

failure

anomaly

failure

incorrect expectation

plan

goal changes

recovery actions

changes to model

unresolved
anomaly

Simplified Fault Management Loop

34

FM Functions

fault
management

detection prediction diagnosis

model
adjustment

decision response

anomaly
detection

failure
detection fault isolation fault

identification

failure
response

determination
goal change failure

recovery
failure

preclusion

Estimation Control

prognosis

35

FM Completeness: Requires Top-Down and
Bottom-up Analyses

determine
fault set

determine set
of failure
effects

determine set
of failure
scenarios

list of local fault responses

analyze set of
failure

scenarios

Develop
necessary

FDIR

determine
system

functions

determine
states

associated with
each function

determine
acceptable

ranges

analyze set of
success

scenarios

for each failure scenario,
assess acceptability

(FDIR vs. FEPT)

Top-down
assessment

Bottom-up
assessment

FDIR necessary to maintain
acceptable functionality
through all mission phases

FDIR necessary to maintain
acceptable functionality for each

identified failure scenario

for each failure effect,
assess relevant mission

phases/activities; add
identified hazards

for each failure
mode, identify failure

effects

FMEA, FTA

functional analysis,
FTA, HA, IHA

identify state(s) associated
with each function

determine the acceptable values of
each state for relevant mission
phases/activities (goals);
acceptable values may change
over course of mission

for each mission phase/activity,
determine FDIR necessary to
maintain acceptable function

36

System States

System states with identified
Failure Modes (SFM)

System states associated
with objectives (SOBJ)

Set of system states SOBJ – set of states must be
assessed for compliance with
failure tolerance and reliability
requirements

SFM – set of states referenced in
the set of failure effects.
Includes time to effect data

SOBJ ^ SFM – FM approach can
include detection of failure mode
causes (TTC can be inferred
from FMEA data)

SOBJ - SFM – FM approach (if not
ignored) limited to detection of
anomaly in state (since no
causes identified)

SFM - SOBJ – set of “don’t care”
states w.r.t. FM design?

37

Relevant Representations and Relationships

• Success Trees
• Represent system functions and functional

decomposition
• Conditions for success; "light" side

• Fault Trees
• Represent system functions and paths to failure of

top event
• Conditions for failure; "dark" side

• Directed graphs
• Represent components and connections/interfaces
• Modeling of physical and logical connections

enables formal modeling of failure effect
propagation

• Failure Modes and Effects Analyses (FMEA)
• Description of the failure modes (mechanisms) and

the immediate failure effect
• Modeled failure effect propagation enables formal

and complete development of all failure effects
• Event Sequences

• Describes system functionality as a function of time
• Provides "triggers" to enable/disable elements of

directed graph representation
• State Machines (Not Shown)

• Necessary to assess sequencing of system states,
both nominal and off-nominal

22
38

Redundancy and Cross-strapping Guidelines

Flight System Fault Tolerance Policy
Development Considerations

No Fault Tolerance Policy Fault Tolerance Policy

Considerations for Adding Selected
Redundancy to a Single String Design

Cooperative
Redundancy

Cross-Strapping
Considerations

Exceptions

Redundancy Types and Considerations

Single
String

Selective
Redundnacy

Block
Redundancy

Functional
Redundancy

Exemptions

Cross-
Strapping

39

40

Fault Protection Components:
Flight System FDIR / H/W Layer

• Key JPL design practice requires definition of Fault Containment
Regions (FCRs):
– “A fault containment region (FCR) is a segment of the system, the design of which

is such that faults internal to the fault containment region do not propagate and
cause irreversible damage beyond the limits of the fault containment region. Note:
Fault propagation can be both direct/obvious (e.g. damage, disabling) and
indirect/subtle (e.g. contention, interference).”

• Fault containment boundaries in the flight equipment are always drawn
around each of the following [8]:

1 - any redundant elements (either functional or block redundant).
2 - any non-critical functions or equipment (e.g. any item where it's function is not

required for mission success, such as engineering telemetry, instruments etc.).
3 - any protective functions or equipment that are conditionally needed, (e.g.

OV/OC protect)
4 - any functional area or equipment the project requires to be fault tolerant.
5 - any functional area or equipment the projects requires fault containment for

development risk (e.g. difficult to replace, long-lead, unique, or costly items are
prime candidates for fault containment boundaries for development risk.)

• FCRs are also important in Single String Designs

Fault Management Architectures1

411

42

Model-based Programs Reason about State

Embedded programs interact with
the system’s sensors/actuators:

• Read sensors

• Set actuators

Model-based programs interact with
the system’s (hidden) state directly:

• Read state

• Set state

Embedded Program

State
Plant

Obs Cntrl

Programmers must reason
through interactions between
state and sensors/actuators.

Model-based Executives automatically
reason through interactions between
states and sensors/actuators.

Model-based
Embedded Program

State
Plant

Estimated State
Model-based Executive

Obs Cntrl

43

System Under Control

Command
Sequence

Typical Spacecraft Execution Architecture

CommandsObservations

Sequence Execution,
Real-Time Behaviors,

& Fault Protection

44

System Under Control

Command
Sequence

Typical Spacecraft Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

45

System Under Control

Command
Sequence

Typical Spacecraft Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

Time-tagged sequences of low-
level commands and “macros”

…

… with fault protection
software running in

parallel, ready to “take
over” from nominal

sequence execution when
a fault monitor is triggered.

… augmented with event-driven
behaviors when necessary…

… executed by a nominal
sequencing engine…

46

System Under Control

Command
Sequence

Limitations of the Typical Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

Sequence designers’
intent is not explicit in

the sequence

Complex interactions between these elements make
it difficult and costly to validate flight software, and to
have confidence that it will work reliably and robustly.

Fault Protection is often considered an “add-on” capability,
adjunct to the nominal control system and developed late
in the project lifecycle, despite the fact that its design can

uncover problems with the nominal control design.

System requirements and
understanding of behavior are
not always directly traceable
to the flight software design.

The boundary between State
Determination and State

Control is sometimes blurred,
with no explicit representation

of “State” in the software.

47

System Under Control

Control
Specification

Desirable Architectural Features

CommandsObservations

Onboard
Executive

Simple state-based
control specifications

with explicit intent

Automated reasoning through
low-level plant interactions

Fault-awareness
(in-the-loop recoveries)

Models that are
writable/inspectable

by systems engineers

Separation of state
determination from control,

with an explicit notion of
state at the boundary

Titan Model-based Executive
• Control layer has flexibility in achieving goal
• Enables integration of tiered fault management capabilities
• Enables integration of state-of-the-art autonomy software

Williams, B.C., Ingham, M.D., Chung, S.H., and Elliott, P.H., “Model-based Programming of Intelligent
Embedded Systems and Robotic Space Explorers”, Proceedings of the IEEE, Special Issue on Modeling
and Design of Embedded Software, Vol. 91, No. 1, Jan. 2003, pp. 212-237.

Remote Agent Experiment on DS-1

Deep Space One

Livingstone:
Diagnosis &

Repair

Mission
Manager

Scripted
Executive

HSTS:
Planner/

Scheduler

Goals

Planning
models

Scripts

Component
models

Remote Agent

50

Mission Data System Reference Architecture

System
Under
Control

State
Control

Hardware
Adapter

Mission Planning & Execution

Control
Goals

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Clear delineation
between control
system and system
under control

State is
explicit

Separation of estimation from control

Models inform
all aspects of
control system

System operation via
overt, objective
statements of intent

Challenges and Opportunities

• Challenges:
– Closing the mid- to high-TRL gap
– Must assure reliability (“bullet-proof” the implementation)
– Changes the operational paradigm – need new tools, training
– Cultural hurdles to acceptance of software technologies (“trust”

issues)

• Opportunities:
– Autonomy is an enabler for certain missions
– Evidence of significant cost savings in operations (EO-1)
– Model-based design lends itself well to development via MBSE

methodologies
– Once general-purpose reasoners have been validated, V&V reduced

to mission-specific models
– Amenability to formal V&V

51

STAARS Auto-coder

• UML Modeling
– Explicitly capture the intent of the

requirements
– Formally capture the behavior in a model
– Create a crisp notion of state

• State-based Framework
– Supports the UML standard
– Allows developers to think and work with

higher constructs – states, events and
transitions

• Auto-coding
– Light-weight Java program
– Reads in the Model which is stored in a non-

proprietary data format (XML)
– Converts the input model into an internal data

structure
– Has multiple back-ends to support different

project requirements
• Test harness

– Ability to run the model stand-alone – module
test environment

• Model checking
– Automatic generation of Verification models
– Exhaustively explore the state-space of the

model
– Checks for various correctness properties

within the model

STAARS Auto-coder

Controller.c

JPL Autocoder

Logged Events

(socket)

Controller.cpp/
Controller.c Controller.py

Target Board

Controller.o

LogEvent.o

Python Application
(GUI)

Controller.pml

Animated Model Formally VerifiedFlight Application

Systems Engineer Software Engineer

Doors
Requirements

Modeling

Source: Garth Watney, JPL

QSTATE Safing::Idle(QEvent const *e) {
string stateName = objName + " Idle";
switch (e->sig) {

case Q_ENTRY_SIG:
LogEvent::log(stateName + " ENTRY");
return 0;

case Q_EXIT_SIG:
LogEvent::log(stateName + " EXIT");
return 0;

case ActivateSafingEv:
LogEvent::log(stateName + " ActivateSafingEv");
QF::publish(Q_NEW(QEvent, RequestSafingEv)

);
Q_TRAN(&Safing::WaitForSC);
return 0;

case RunSafingCmdEv:
LogEvent::log(stateName + " RunSafingCmdEv");
Q_TRAN(&Safing::Active);
return 0;

}
return (QSTATE)&Safing::Enabled;

}

STAARS Process

STAARS Benefits

• Lessened the gap between System and Software
Engineering
– Formal specification of state behavior which can be implemented

directly into flight software
– Build rapid executable models for early prototype testing

• Increased efficiency
– Software developers can greatly increase their output

• Increased maintainability
– Rapid turn-around from specification changes to a software build

• Increased reliability
– Fewer defects are introduced
– Auto generated code based on a reliable statechart framework that

conforms to the UML statechart semantics
• Full control of the process

– Drawing tools can be swapped in and out
– Autocoder can be customized for specific projects

• Output in C or C++
• Add more UML features – Deferred events, etc
• Currently based on the Quantum Framework’s Publish/Subscribe – but could

be customized to be based on other Frameworks

	Fault Management at JPL: Past, Present and Future
	Outline
	FUNDAMENTALS
	Position Statement
	FUNDAMENTALS
	What is Fault Protection?
	Fault Protection Scope
	PAST EXPERIENCE IN DEEP SPACE FAULT PROTECTION
	Missions and Capabilities
	Typical Constraints and Driving Requirements
	Fault Protection “Family Tree*”
	FP “Family Tree” – Detail
	In-Flight Experience with Fault Protection
	PAST EXPERIENCE IN DEEP SPACE FAULT PROTECTION
	Fault Protection System Engineering
	Characteristics of JPL FP Approach
	FP Across the Project Lifecycle
	FM Completeness: Requires Top-Down and Bottom-up Analyses
	Relevant Representations and Relationships
	Challenges for Current FM Approach
	FUTURE EVOLUTION
	Directions of Current Research (1)
	Directions of Current Research (2)
	Directions of Current Research (3)
	Summary
	Opportunities to Continue the Discussion
	BACKUP
	Fault Protection Context
	A Few FM Principles
	NASA SMD FM HB: Core and System Terms
	Terminology Concept Diagram
	Fault – Failure Recursion
	Progression of Anomalous/Failed States
	Simplified Fault Management Loop
	FM Functions
	FM Completeness: Requires Top-Down and Bottom-up Analyses
	System States
	Relevant Representations and Relationships
	Redundancy and Cross-strapping Guidelines
	Fault Protection Components:�Flight System FDIR / H/W Layer
	Fault Management Architectures1
	Model-based Programs Reason about State
	Typical Spacecraft Execution Architecture
	Typical Spacecraft Execution Architecture
	Typical Spacecraft Execution Architecture
	Limitations of the Typical Architecture
	Desirable Architectural Features
	Titan Model-based Executive
	Remote Agent Experiment on DS-1
	Mission Data System Reference Architecture
	Challenges and Opportunities
	STAARS Auto-coder
	STAARS Auto-coder
	Slide Number 54
	STAARS Benefits

