

Ingeniería y Sistemas S.A.

Modular and Incremental Framework for GNC Subsystem Validation and Verification

ESTEC – Noordwijk Model-Based Avionics Verification & Validation – October 26th, 2011

CONTENTS

- **Presenting SENER's Modular and Incremental Framework**
- Major Simulator models types, with respect to the item function
- Applicability Domain of the Validation and Verification Models
- Different Models need, re-usability and impact on system validation
- Models validation needs throughout the system and subsystem lifecycle
- Most relevant systems properties required in each stage of the V&V process and their function in the applicable domain
- IXV: V&V Approach to Model-Based Validation
- Proba-3: V&V Approach to Model-Based Validation

Modular and Incremental Framework

SCOPE: Overall GNC/AOCS Validation and Verification process

- early prototyping with generic pre-validated models \bullet
- an effective validation of the GNC/AOCS application software \bullet
- incremental development of the hardware-in-the-loop (HITL) facility \bullet
- Algorithm Design Environment: design of the GM control ased in generic pre-1. validated models
- Functional Engineering Simulation 2. needs and allows both design µ software. Final tuning process ied in this facility.

.aculity fully tailored to the specific project Ju-fit of the developed GNC/AOCS application

- 3. Avionics Test Bench: design qualification (fully simulate vs HW stimuli) hardware items or units not allowing HW in the loo
- System Verification: final verification of t 4. in previous stages.

- of incremental approach and provides an hybrid (High Fidelity Models replace long leads
 - tem for those aspects that cannot be verified

Major Simulator models types, with respect to the item function

- Sensors and Actuators
- On-board computer
- Subsystem Models (such as Thermal SS, Power SS, etc..)
- Dynamics, Kinematics and Environment Models (including Flexible dynamics)
- Mass, Centring and Inertia Models
- Ground segment model

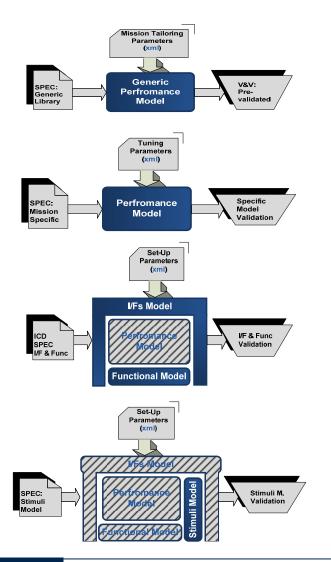
Applicability Domain of the Validation and Verification Models

- **DESIGN PHASE:**
 - Generic set of simulator models and rapid prototyping tools like Matlab Simulink.
 - In-house development.
 - Project to project reuse and improvement (lessons learnt).

DESIGN VALIDATION PHASE:

- Representative of real units' performance with validation against
 - o real unit data or
 - o mission specific high-fidelity simulated data.
- Hardware chain latency and jitter.
- On-board software scheduling.

MODEL-BASE VERIFICATION:


- High Fidelity models interfacing:
 - Application Software
 - o OBC Emulator or electrically to OBC

• <u>HW-IN-THE-LOOP VERIFICATION:</u>

- Enhance the model with the ability:
 - o to monitor actuator
 - Stimulate sensors' electronics
- Hybrid configuration of with both Simulation Models and HW models (modularity & real-time)

Different Models need, re-usability and impact on system validation

GENERIC PERFORMANCE MODELS:

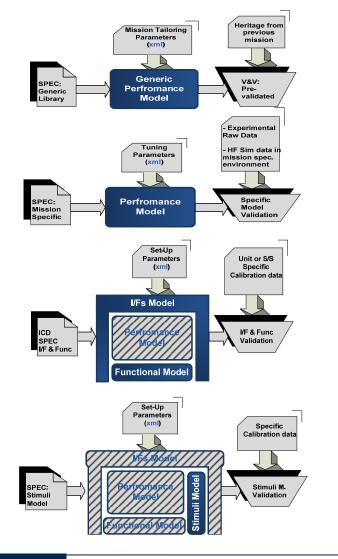
• These models are oriented to preliminary design and analysis. *Mission tailoring parameters are in xml.*

PERFORMANCE MODELS:

- Mission specific for detailed design validation at CDR level,
- Its re-usability as a core of the H-F Models.

Tuning parameters are in xml.

HIGH FIDELITY MODELS:


- Fulfill part of qualification when no further stage is possible or
- Advance/Prepare avionics qualification with HITL
- Enhance with interfaces and functional model to allow a Mode-Based Verification. (Set-Up Param. xml)

HITL MODELS:

- Confirm that electrical interfaces and real units interaction is not affecting functional and performance behavior of the system.
- Enhanced to allow hardware stimulation and monitoring of both sensors and actuators

Models validation needs throughout the system and subsystem lifecycle

GENERIC PERFORMANCE MODELS: •Generic library derived on in-house heritage from previous missions.

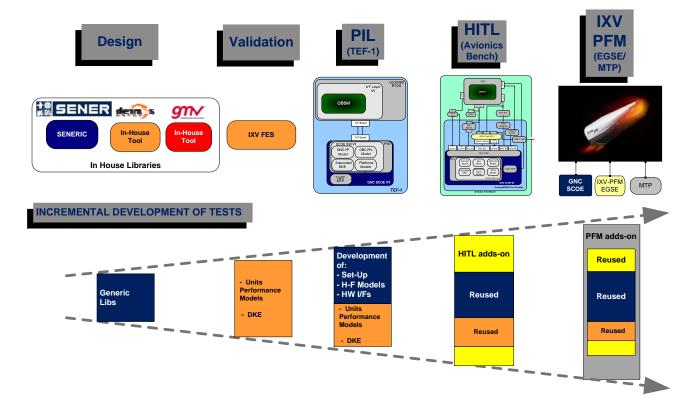
PERFORMANCE MODELS VALIDATION BASED ON:
•Experimental raw data provided by units' supplier
•High fidelity simulation data applicable to the specific mission environment

H-F MODELS VALIDATION PERFORMED AGAINST: •Specific calibration data obtained on dedicated test campaign or

•Measurement performed at system, subsystem and units level on mission dedicated hardware.

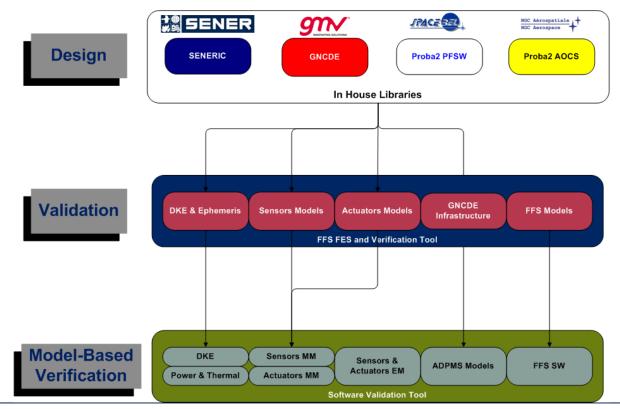
HITL MODELS VALIDATION ARE ACHIEVED ON: •Specific calibration data and •reference cases

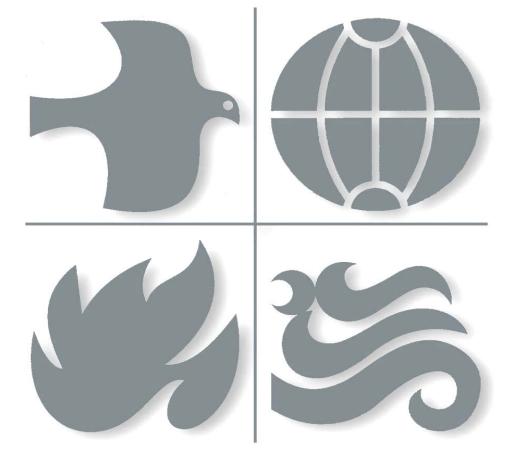
Most relevant systems properties required in each stage of the V&V process and their function in the applicable domain


System Properties	Design	Design Validation	Model-Based Verification	HITL Verification
Mass, Centring and Inertia data	Х	X	X	Х
Control Mode Architecture	Х	X	X	Х
Equipment Matrix	Х	X	X	X(*)
Functional System Properties	Х	Х	X	Х
Measured Mounting data				X(*)
Software parameters		X	X	Х
Mission specific performance model data		Х	X(**)	X(**)
Calibration data			X(**)	X(**)
TM/TC database			X	Х
Electrical ICDs				X

- (*) Equipment Matrix data are partially replace by Measured Mounting data.
- (**) Mission specific performance model data are mostly replace by Calibration data.

IXV: V&V Approach to Model-Based Validation


- Incremental Development allow early verification and preparation of the HITL
- Model-Based Verification allow to accommodate for verification in absence of Long Leads Items (Body Flap Chain).



Proba-3: V&V Approach to Model-Based Validation

- Three Phases are applicable for a design to cost approach:
 - Design
 - Design Validation
 - Model-Based Verification
- The Formation Flying System SW is verified at closed loop level in pure numerical Model-Based simulator facility named SW based test bench (SBTB)

