
System Impact of Distributed
Multicore Systems
ADCSS – MCPSA 2011

Mathieu PATTE – Alfons CRESPO – Vincent Lefftz

ESTEC Contract 4200023100

Date - 2

Outline


Study context



Commercial embedded multi core processors



Multi core for space use scenarios


Integrated payload controller / data processing


Extended IMA


Dynamic scheduling



Xtratum port to NGMP



NGMP Assessment

Date - 3

Study Context


System Impact of Distributed Multi core Systems
objectives:


Multi core processor use scenarios



Port of an hypervisor on the NGMP


NGMP assessment



Industrial organization:


Astrium (Prime): system analysis, hypervisor specification
and use case implementation



Universitat Politecnica de Valencia: hypervisor port to
NGMP (Xtratum), hypervision technology expertise

Date - 4

Outline


Study context



Commercial embedded multi core processors



Multi core for space use scenarios


Integrated payload controller / data processing


Extended IMA


Dynamic scheduling



Xtratum port to NGMP



NGMP Assessment

Date - 5

Existing commercial embedded multi core
processors: state of the art


Driven by mobile applications (smartphones,
tablet, portable gaming console)



Players:


CortexA9 MP (Apple A5, samsung exynos)


STEricsson Nomadik


Qualcomm Snapdragon



Commonalities:


Homogeneous + specialized units


ARM based


Tightly coupled memory


Multilayer AHB / AXI

Date - 6

Existing commercial embedded multi core
processors: example



Cortex-A9 MPCore



Copyright © 2008-2011
ARM. All rights reserved.

Date - 7

Existing commercial embedded multi core
processors: programming model



SMP OS with APIs:


PThread


OpenMP


MPI class of APIs



Parallelization principles


Data parallelism: same code, different bits of data


Task parallelism: different code, same data

Date - 8

Outline


Study context



Commercial embedded multi core processors



Multi core for space use scenarios


Integrated payload controller / data processing


Extended IMA


Dynamic scheduling



Xtratum port to NGMP



NGMP Assessment

Date - 9

Space domain needs for more capable
processors


Integrated Modular Avionics: centralization of
processing tasks on a single computer


STR processing


GPS processing



100-1000 MIPS processor building block for
payload processing



 NGMP is the solution currently being
investigated

Date - 10

Multi core use scenarios



Integrated payload controller / data processing


Execution parallelism of controller and data processing


Efficient implementation for small payload



Extended IMA application


STR and GPS processing in the central OBC


Partitioning of the CSW


Stringent I/O requirements

Date - 11

Integrated payload controller / data
processing: hypervisor



Hypervisor (Xtratum) for T&SP partitioning of
controller and data processing tasks:


Hypervisor allows using a guest OS for the controller and
close to bare metal for processing



Need for SMP partitions:


Typically, one core for controller, three cores for data
processing

Date - 12

Integrated payload controller / data
processing: task parallelism



Task parallelism is better suited than data
parallelism for data processing on multi core


Explicit control of core execution: allows minimizing hardware
concurrency


Smaller code fits in each core’s L1 caches


Code rework to build SW pipeline

Date - 13

Extended IMA application


Multiple partitions : STR, GPS, FDIR, AOCS,
PAYLOAD ….


Hypervisor allows using different RTOS


Concurrent development and validation, IF HARDWARE
COUPLING is low.


Indeterminism is dealt with by keeping huge performance
margins.



Processing requirements are low, constraints are
on I/O latencies and throughput  use of
DYNAMIC SCHEDULING

Date - 14

Dynamic scheduling: I/O facts



I/Os are mostly not deterministic, eg:


Flow controlled UARTs


TM link bandwidth allocation mechanisms


Asynchronous TC arrival



Therefore I/O operations are often IRQ driven

Date - 15

Dynamic scheduling: time partitioning and
IRQ handling on mono core


Time partitioning  IRQ handling latencies


In order not to break time partitioning, an asynchronous IRQ
can only be processed during one of the execution slots of
the destination partition



IRQ handling latencies  performance loss or
high hardware cost


To reduce IRQ handling latencies, it’s possible to schedule
partition that handles IRQ more often, but performances are
degraded due to numerous context switches


Or I/Os must be more autonomous: large buffers,

micro-controllers

Date - 16

Dynamic scheduling: IRQ handling on
multi core partitioned systems


1st possibility: I/O management partition running
100% on a dedicated core, problems:


Dedicating one complete core for IRQ results in performance
loss of the overall system (especially on dual core)


IPC communications are needed to transfer data to the final
user partition


Impossible to dedicate a given I/O to one partition, partitions
are coupled via the I/O partition



2nd possibility: Dynamic scheduling on the core
dedicated for IRQ handlers execution

Date - 17

Dynamic scheduling: principles



As opposed to fixed cyclic scheduling:


Partitions scheduling is modified dynamically at runtime upon
occurrence of external events (IRQ)



Scheduling policy is chosen per core:


3 cores using fixed cyclic scheduling, 1 core using dynamic
scheduling

Date - 18

Dynamic scheduling: use case


Partition execution is split


Normal processing on cores using fix cyclic scheduling, IRQ
handler execution on core using dynamic scheduling



Background partition on core using dynamic
scheduling


The dynamic scheduler executes the background partition
when there isn’t any IRQ handler to execute

CPU0

CPU1

P0 P1 P2

P3

P0 P1 P2 P0 P1 P2

I0

P3

I0 I1 I2

P3 P3

I2I0 + I1

P3 P3

Date - 19

Dynamic scheduling: benefits


IRQ handling latency minimized


Allows lowering constraints on I/O architecture and
scheduling plan



Efficient use of multi core processor


A background partition can be executed between IRQs


Efficient use of a additional core on strongly hardware
coupled multi core processors



Efficient I/O operations


No IPC needed, zero copy communication


Allows for I/O direct allocation to partitions

Date - 20

Dynamic scheduling: impacts


Concurrent execution of IRQ handler and partition


Synchronization between IRQ handler task and other
partition’s tasks is achieved using hypervisor IPC or SMP OS
primitives.



Time partitioning may be impacted


The dynamic scheduler might not be able to enforce strict
time partitioning, however the intrinsic hardware coupling of a
multi core processor doesn’t allow for strict time partitioning
neither.

Date - 21

Dynamic scheduling: other uses…



FDIR mechanisms


Fixed cyclic scheduling plan doesn’t allow for quick reaction
to error conditions, dynamic scheduling can allow reducing
fault mitigation latencies.



Enabler for advanced CSW partitioning

Date - 22

Outline


Study context



Commercial embedded multi core processors



Multi core for space use scenarios


Integrated payload controller / data processing


Extended IMA


Dynamic scheduling



Xtratum port to NGMP



NGMP Assessment

Date - 23

NGMP Assessment: IOMMU



IOMMU allows direct allocation of I/O to partitions


Partitions can program DMA transfers in their virtual address
space



IOMMU ensures space partitioning


But not time partitioning! Rogue or failing partitions can
“illuminate” the bus.

Date - 24

NGMP Assessment: FLUSH instruction


FLUSH = unprivileged instruction which flush both
caches even when they are frozen


This breaks partitioning and forbids the possibility to prevent
one partition to update the cache contents!



SPARCv8 ISA doesn’t require to flush the caches
and moreover the FLUSH instruction is optional



Some RTOS (RTEMS) are issuing flush
instruction after installing trap handlers

Date - 25

NGMP assessment: hardware coupling


Hardware coupling: concurrency of access to the
same resources



Hardware coupling is an intrinsic property of multi
core processors!



Too much hardware coupling prevents concurrent
development and validation


Partitions A and B are validated separately, if the hardware
coupling is too important, at integration time the execution
timings of A and B will change!

Date - 26

NGMP assessment: hardware coupling


Actual evaluation not yet performed



Matters of concerns:


L1 caches size and write through policy: locality of space
applications software is low


Shared AHB bus: round robin arbiter doesn’t take into
account the duration of the accesses


Single port L2 cache: the benefit of a cache hit for one core
may be annulled by the fact it has to wait for a previous core
to complete an external memory access.


Single memory controller: dual memory controller deemed
necessary for simpler architecture like the SCOC3

Date - 27

Conclusion


Multi core execution parallelism is an enabler for
some applications



SMP partitions are needed to efficiently use all the
cores



IOMMU and dynamic scheduling should allow for
efficient I/O handling mechanisms



Hardware coupling can be a show stopper if too
important

Date - 28

Way forward



Evaluation of the performance of Xtratum port to
the NGMP



Use case implementation to benchmark I/O
handling mechanisms

Date - 29

Q&A

	System Impact of Distributed Multicore Systems
	Outline
	Study Context
	Outline
	Existing commercial embedded multi core processors: state of the art
	Existing commercial embedded multi core processors: example
	Existing commercial embedded multi core processors: programming model
	Outline
	Space domain needs for more capable processors
	Multi core use scenarios
	Integrated payload controller / data processing: hypervisor
	Integrated payload controller / data processing: task parallelism
	Extended IMA application
	Dynamic scheduling: I/O facts
	Dynamic scheduling: time partitioning and IRQ handling on mono core
	Dynamic scheduling: IRQ handling on multi core partitioned systems
	Dynamic scheduling: principles
	Dynamic scheduling: use case
	Dynamic scheduling: benefits
	Dynamic scheduling: impacts
	Dynamic scheduling: other uses…
	Outline
	NGMP Assessment: IOMMU
	NGMP Assessment: FLUSH instruction
	NGMP assessment: hardware coupling
	NGMP assessment: hardware coupling
	Conclusion
	Way forward
	Q&A

