Next Generation Microprocessor

Status, Use Cases and Benchmarks

ESA Workshop in Avionics Data, Control and Software Systems (ADCSS) 2011 Multi-Core Processors for Space Applications

27 October, 2011

www.aeroflex.com/gaisler

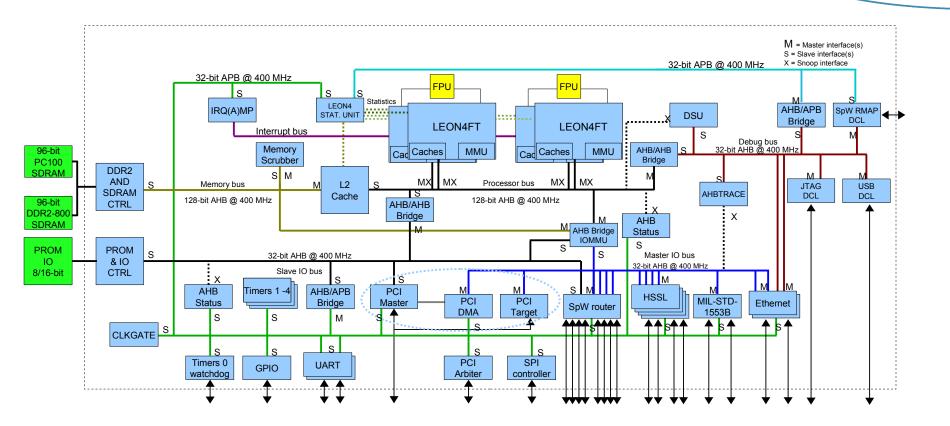
Overview

- NGMP is an ESA activity developing a multi-core system with higher performance compared to earlier generations of European Space processors
- Part of the ESA roadmap for standard microprocessor components
- Aeroflex Gaisler's assignment consists of specification, the architectural (VHDL) design, and verification by simulation and on FPGA
- FPGA prototypes with several downsized configurations have been delivered.
- NGMP activity is currently on hold in anticipation of progress on the European Space DSM technology. To be resumed in 2012.
- Work is progressing on developing a functional prototype (FP)
- This presentation will focus on: Current status, architecture overview, how to use the NGMP and some preliminary benchmark data

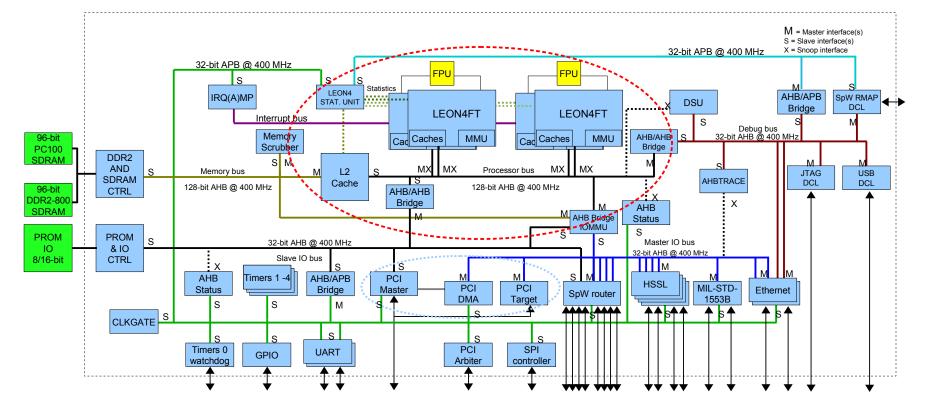
Current status / Development Schedule

- NGMP activity
 - Aug 2009: Kick-off
 - Feb 2010: Definition and specification
 - June 2010: First versions of FPGA prototypes
 - Dec 2010: Final RTL code, FPGA Demonstrator
 - Aug 2011: Verified ASIC netlist (postponed)
- Functional prototype
 - May 2011: Kick-off
 - July 2011: Definition and specification
 - Nov 2011: Architectural/Detailed design
 - Jan 2012: Layout generation and verification
 - May 2012: Prototype implementation, design validation
 - Devices on evaluation board are expected to be available in Q2 2012.
- Manufacturing of FM prototype parts not yet decided
- Development of flight model in a separate contract

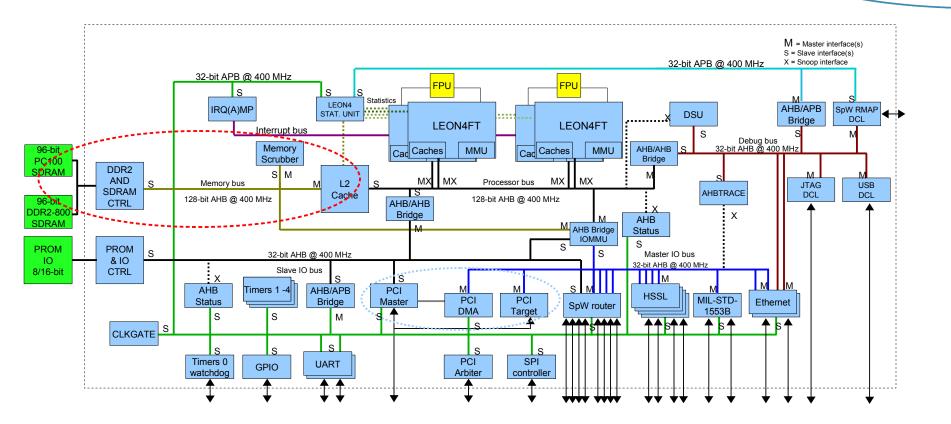
EROFLEX


Architectural Overview

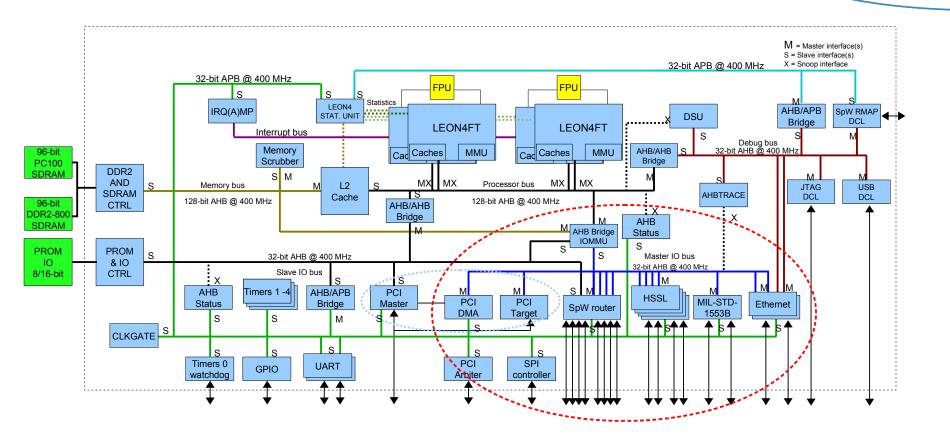
- Quad-core LEON4FT with two shared GRFPU floating point units
- 128-bit L1 caches connected to 128-bit AHB bus
- 256+ KiB L2 cache, 256-bit cache line, 4-way LRU
- 64-bit DDR2-800/SDR-PC100 SDRAM memory interface
- 32 MiB on-chip DRAM (if feasible, not applicable for FP)
- 8-port SpaceWire router with four internal AMBA ports
- 32-bit, 66 MHz PCI interface
- 2x 10/100/1000 Mbit Ethernet
- 4x High-Speed Serial Links (if available on target tech, not applicable for FP)
- Debug links: Ethernet, JTAG, USB, dedicated SpW RMAP target
- 16xGPIO, SPI master/slave, MIL-STD-1553B, 2xUART
- Target frequency: 400 MHz
- Maximum power consumption: 6W. Idle power 100 mW.



Architectural Overview

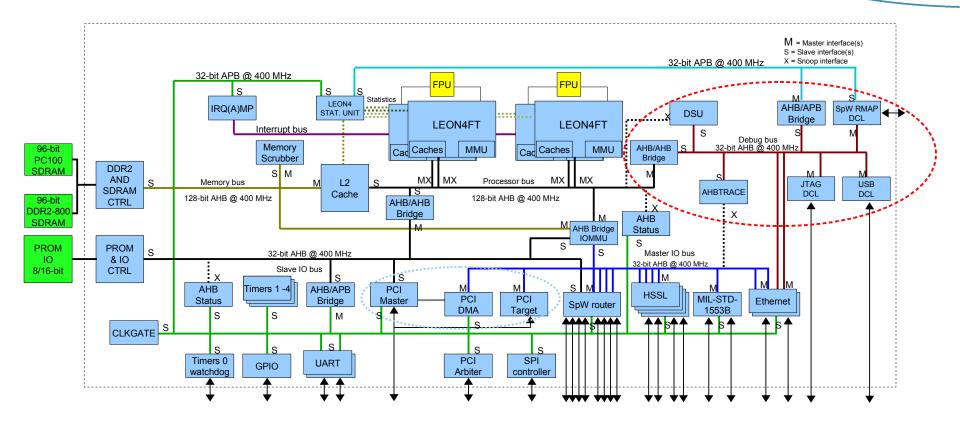


Architecture - Processor Bus



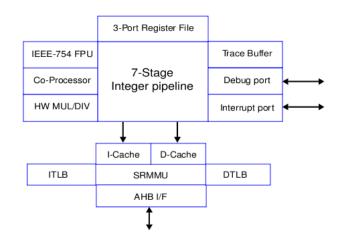
Architecture - Memory Bus

Architecture – Master I/O Bus



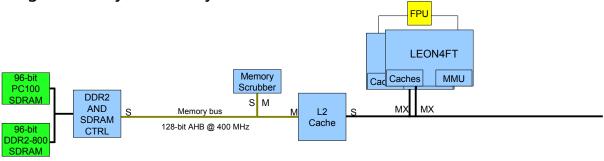
Architecture – Slave I/O Bus

M = Master interface(s) S = Slave interface(s) X = Snoop interface 32-bit APB @ 400 MHz 32-bit APB @ 400 MHz FPU FPU s S Statistics Μ LEON4 STAT. UNIT AHB/APB IRQ(A)MP SpW RMAP DSU 4 Bridge DCL LEON4FT LEON4FT Interrupt bus S S Debug bus 32-bit AHB @ 400 MHz Memory Cac Caches Cac Caches AHB/AHB 96-bit MMU MMU C Scrubber Bridge PC100 DDR2 SDRAM SM Μ AND MX MX Processor bus MX MX Memory bus L2 S JTAG USB M SDRAM AHBTRACE S DCL DCL Cache 128-bit AHB @ 400 MHz 128-bit AHB @ 400 MHz 96-bit AHB/AHB CTRL DDR2-800 Bridge Х AHB SDRAM M AHB Bridge Status IOMMU S S PROM PROM S 32-bit AHB @ 400 MHz S Master IO bus 10 & IO 32-bit AHB @ 400 MHz 8/16-bit CTRL Slave IO bus М X Ś S мм AHB Timers 1 -4 AHB/APB PCI Μ Μ S M HSSL PCI PCI MIL-STD-Status Bridge Master Ethernet SpW router DMA 1553B Target 4 S S Μ <u>↑↑↑↑</u>₽ **≜**∳ А₿А **▲** S S CLKGATE s S S S S Timers 0 PCI SPI UART GPIO watchdog Arbiter controller

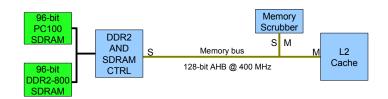

Architecture - Debug Bus

Architecture - LEON4FT

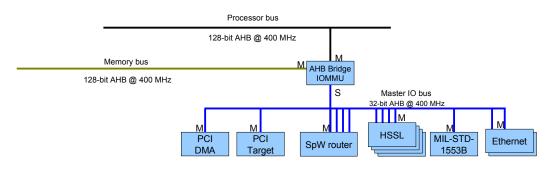
- IEEE-1754 SPARC V8 compliant 32-bit processor
- 7-stage pipeline, multi-processor support
- Separate multi-set L1 caches with LRU/LRR/RND, 4-bit parity
- 64-bit single-clock load/store operation
- 64-bit register file with BCH
- 128-bit AHB bus interface
- Write combining in store buffer
- Branch prediction
- CAS support
- Performance counters
- On-chip debug support unit with trace buffer
- 1.7 DMIPS/MHz, 0.6 Wheatstone MFLOPS/MHz
- Estimated 0.35 SPECINT/MHz, 0.25 SPECFP/MHz
- 2.1 CoreMark/MHz (comparable to ARM11)



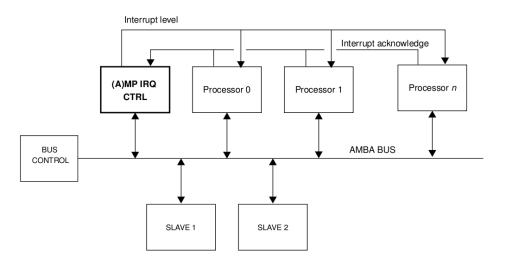
Architecture - Level-2 Cache


- 256 KiB baseline, 4-way, 256-bit internal cache line
- Replacement policy configurable between LRU, Pseudo-Random, master based.
- BCH ECC and internal scrubber
- Copy-back and write-through operation
- 0-waitstate pipelined write, 5-waitstates read hit (FT enabled)
- Support for locking one more more ways
- Support for separating cache so a processor cannot replace lines allocated by another processor
- Fence registers for backup software protection
- Essential for SMP performance scaling, reduces effects of slow, or high latency, memory.

Architecture - Memory scrubber


- Can access external DDR2/SDRAM and on-chip SDRAM
- Performs the following operations:
 - Initialization
 - Scrubbing
 - Memory re-generation
- Configurable by software
- Counts correctable errors with option to alert CPU
- Supports, together with DDR2 SDRAM and SDRAM memory controller, on-line code switch in case of permanent device failure

Architecture - IOMMU


- Uni-directional AHB bridge with protection functionality
- Connects all DMA capable I/O master through one interface onto the Processor bus or Memory bus (configurable per master)
- Performs pre-fetching and read/write combining (connects 32bit masters to 128-bit buses)
- Provides address translation and access restriction via page tables
- Provides access restriction via bit vector
- Master can be placed in groups where each group can have its own set of protection data structures

Architecture - Interrupt controller

- The standard LEON3/4 multiprocessor interrupt controller has been extended to support AMP configurations
- Controller in NGMP has four internal interrupt controllers
- Each processor can be dynamically routed to one of these (internal) controllers

AEROFLEX

Architecture - Separation

- Measures taken to improve separation include:
 - Extension of interrupt controller, multiple timer units
 - Peripheral register areas start on page boundaries
 - Inclusion of IOMMU
- Separation is accomplished by relying on
 - Processor memory management units
 - I/O memory management unit
 - L2 cache fence registers
- The current hardware support for separation should provide efficient protection against misbehaving software and unwanted external accesses (for instance from PCI/RMAP)
- Shared resources that will lead to SW instances affecting each other:
 - Shared AMBA buses/L2 cache/memory controller
 - FPU sharing

How to use NGMP

- We will now look at some high level "use cases" for the NGMP architecture:
 - Symmetric multiprocessing configurations
 - Asymmetric multiprocessing configurations
 - PROM-less booting
 - SpaceWire router/bridge

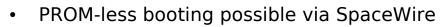
How to use NGMP – SMP

- Symmetric multiprocessing is supported by configuring all LEON4 cores to use the same interrupt controller.
- SMP configurations with 2 4 processors are supported
- Operating systems that support SMP for LEON include:
 - Linux 2.6+
 - VxWorks 6.7
 - eCos
 - RTEMS (work is progressing)

How to use NGMP – AMP

- Several parallel UP configurations, and mixing of SMP and UP configurations, is supported through the use of extended interrupt controller and multiple timer units.
- Software space separation is achieved through processor MMUs – all peripheral cores are mapped at 4 KiB address boundaries.
- The IOMMU can be used to enforce that accesses from a DMA capable unit belonging to one OS does not access memory areas assigned to another OS.

CFG	CPU 0	CPU 1	CPU 2	CPU 3	
0	eCos/ RTEMS/ VxWorks/ Linux 2.6+/ Bare-C/ Other (UP)	eCos/ RTEMS/ VxWorks/ Linux 2.6+/ Bare-C/ Other (UP)	eCos/ RTEMS/ VxWorks/ Linux 2.6+/ Other (UP) Bare-C/	eCos/ RTEMS/ VxWorks/ Linux 2.6+/ Bare-C/ Other (UP)	
1	VxWorks or Line (SMP)	os (SMP)			
2	VxWorks or Line	VxWorks/ Linux/RTEMS/ Ecos/Bare- C/Other (UP)			
3	VxWorks or Linux 2.6+ or eCos (SMP)				



Taking advantage of the four LEON4FT

- Advantage: More processing power, more functions on one chip
- Design goal of maximum average performance has a cost in jitter/predictability
- Our general recommendation: Use a simple SMP OS
- Linux/VxWorks/eCos with SMP support
 - Developers hesitant to trust an SMP kernel
- UP instances of RTEMS/VxWorks/eCos/Bare-C/Other can be used by linking images to separate memory areas
 - Booting multiple images is supported by MKPROM2
 - May need static MMU tables to enforce separation
 - Developer need to assign hardware resources
 - But apart from added work on setup, no news
 - More functions on one chip
 - The cost is increased jitter

PROM-less / SpW applications

- Connect via RMAP
- Configure main memory controller
- Use HW memory scrubber to initialize memory
- Enable L2 cache
- Upload software
- Assign processor start address(es)
- Start processor(s)
- SpaceWire router, with eight external ports, is fully functional without processor intervention
- Device can also act as a software/processor-free bridge between SpW and PCI/SPI/1553 etc.
 - IOMMU can be used to restrict RMAP access

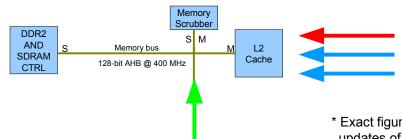
EROFLEX

Summary of New Features

- Features in NGMP not found in most present day LEON/LEON-MP architectures:
 - Quad core LEON4FT
 - L2 cache, with locking
 - Large on-chip RAM (32 MiB, if available on target)
 - Better support for partitioning / ASMP:
 - IOMMU
 - Per-processor timers and interrupt cntrlrs
 - Improved debug support (# links, filters, perf. cnt)
 - Boot options (PROM, RMAP)
 - Interrupt time stamping
 - Hardware memory scrubber
 - With on-line ECC switch
 - Large number of SpaceWire links, with on-chip router

AEROFLEX

Benchmarks - Overview


- Benchmarks
 - I/O traffic
 - FPU sharing
 - Scaling
 - Comparison with AT697, UT699, GR712RC

Benchmarks – I/O traffic routing

- Traffic simulations* on system at target frequency
- Tests benefited from L2 cache, however, decent transfer rates can be achieved without causing traffic on the Processor bus

Configuration	1x Eth	2x Eth		SpW		Combined			
		Eth0	Eth1	Per port	Total	Eth0	Eth1	Spw/port	Spw total
L2 cache disabled	1.2 Gb/s	730 Mb/s	790 Mb/s	394 Mb/s	1.57 Gb/s	438 Mb/s	480 Mb/s	216 Mb/s	865 Mb/s
L2 cache enabled	1.7 Gb/s	1.7 Gb/s	1.7 Gb/s	1.56 Gb/s	6.25 Gb/s	1.4 Gb/s	1.5 Gb/s	1 Gb/s	4 Gb/s
L2 cache FT enabled	1.7 Gb/s	1.7 Gb/s	1.7 Gb/s	1.5 Gb/s	6.1 Gb/s	1.4 Gb/s	1.4 Gb/s	1.5 Gb/s	3.9 Gb/s
Bypassing L2 cache using IOMMU connection directly to Memory bus	1.4 Gb/s	1.2 Gb/s	1.2 Gb/s	697 Mb/s	2.8 Gb/s	746 Mb/s	850 Mb/s	338 Mb/s	1.4 Gb/s

* Exact figures no longer fully applicable due to updates of L2 cache and memory controller

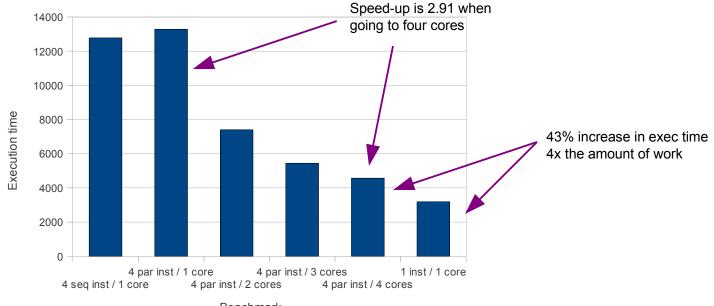
Benchmarks – FPU sharing (0)

- Quad instance runs of single/double precision Whetstone on quad CPU system show no measurable difference between having 1x FPU, 2xFPU or 4xFPU (one dedicated FPU per CPU)
- Runs of some of the benchmarks included in SPEC CPU2000 on dual CPU system with 1x and 2x FPU:

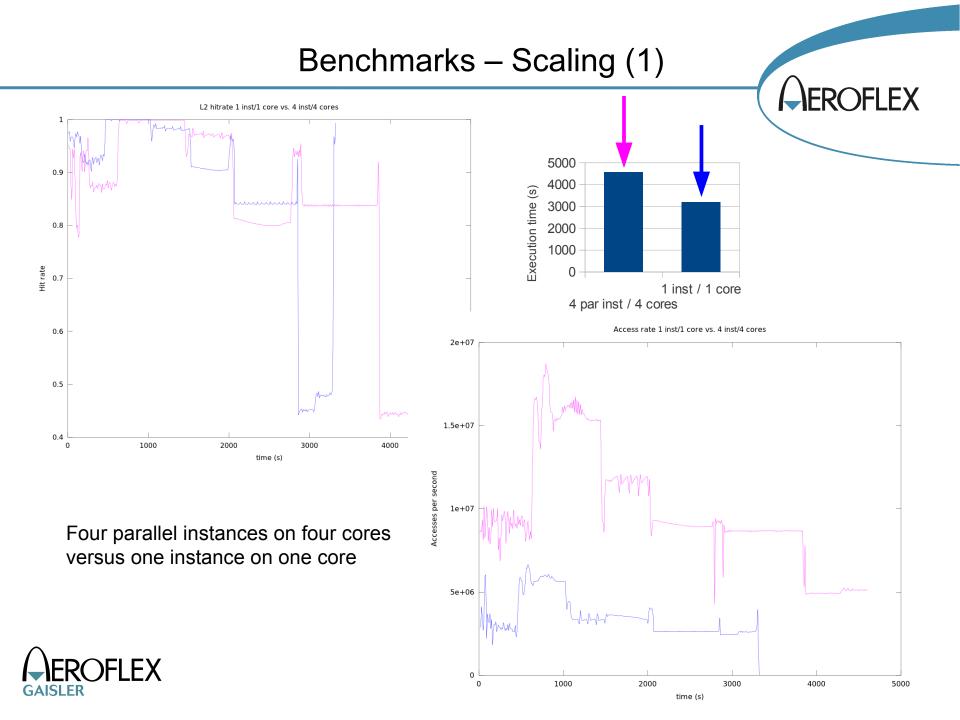
Test	ML510-A (1x FPU) exec. time (s)	ML510-B (2x FPU) exec. time (s)	Difference (A-B) (s)	Dedicated FPU speed-up (A/B)
168.wupwise	1467	1451	16	1.01
171.swim	540	534	6	1.01
172.mgrid	1331	1311	20	1.02
173.applu	637	623	14	1.02
177.mesa	1632	1629	3	1.00
178.galgel	2094	2067	27	1.01
179.art	450	448	2	1.00
183.equake	1298	1271	27	1.02
188.ammp	2210	2165	45	1.02
191.fma3d	12476	12348	128	1.01
200.sixtrack	3265	3024	241	1.08
301.apsi	494	478	16	1.03

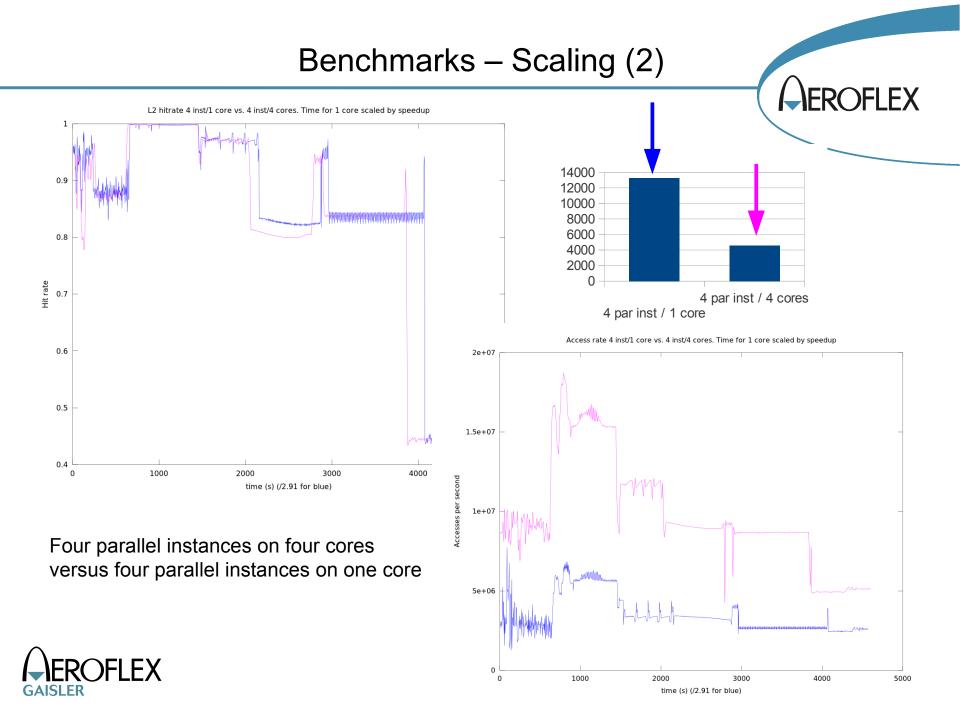
Benchmarks – FPU sharing (1)

• FPU sharing, for this particular system, more noticeable with applications using division (FDIV, FSQRT):


```
int main(void)
   int i;
   double a = 3, b = 0.1, c;
   volatile double d;
                                                          82 00 60 01 inc %g1
                                                   1042c:
                                                          95 a3 89 c8 fdivd %f14, %f8, %f10
                                                   10430:
                                                   10434:
                                                          80 a0 40 02 cmp %g1, %g2
   for (i = 0; i < 10000000; i++) {
                                                   10438:
                                                          12 bf ff fd bne 1042c <main+0x28>
      c = a/b;
                                                   1043c:
                                                          91 a2 08 4c
                                                                        faddd %f8, %f12, %f8
     b += 0.1;
   d = c;
   return 0;
}
```

Test	ML510-A (1x FPU) exec. time (s)	ML510-B (2x FPU) exec. time (s)	Difference (A-B) (s)	Dedicated FPU speed-up (A/B)
One instance	3.53	3.53	0	1.00
Two instances	4.68	3.53	1.15	1.33
Three instances	4.73	3.55	1.18	1.33
Four instances	4.82	3.58	1.24	1.35


Benchmarks – Scaling (0)


 Running gcc, parser, eon, twolf, applu and art CPU2000 benchmarks first sequentially and then in parallel on one to four cores:

Benchmark

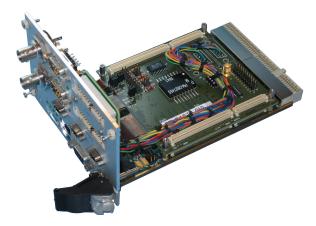
Benchmarks - Comparison

- Comparison with existing processors targeted for space
- Benchmark scores relative to AT697:

Benchmark	AT697	UT699	GR712RC	NGMP
164.gzip	1	0.94 (0.66)	1.1 (1.1)	1.31 (5.24)
176.gcc	1	0.79 (0.55)	0.97 (0.97)	1.3 (5.2)
256.bzip2	1	0.93 (0.65)	1.06 (1.06)	1.33 (5.32)
AOCS	1	1.2 (0.84)	1.52 (1.52)	1.79 (7.16)
Basicmath	1	1.3 (0.91)	1.46 (1.46)	1.62 (6.48)
Coremark, 1 thread	1	0.89 (0.62)	1.09 (1.09)	1.21 (4.84)
Coremark, 4 threads	1	0.89 (0.62)	2.05 (2.05)	4.59 (18.36)
Dhrystone	1	0.94 (0.66)	1.05 (1.05)	1.39 (5.56)
Dhrystone, 4 instances	1	0.94 (0.66)	1.61 (1.61)	4.81 (19.24)
Linpack	1	1.2 (0.84)	1.26 (1.26)	1.71 (6.84)
Whetstone	1	1.94 (1.36)	2 (2)	2.22 (8.88)
Whetstone, 4 instances	1	1.94 (1.36)	3.7 (3.7)	8.68 (34.72)

All benchmarks were compiled with GCC-4.3.2 tuned for SPARC V8. All systems were clocked at 50 MHz during the tests, using 32-bit SDRAM (LEON2/3) or 64-bit DDR2 (NGMP) Note that the maximum operating frequency of the devices differ, here all tests are run at 50 MHz Values in parentheses are scaled for maximum frequency.

Simulator and Debugger


- NGMP simulator based on GRSIM
 - C-models of IP cores linked into final simulator
 - Re-entrant and thread-safe library
 - Accuracy goal is 90% over extended period
- NGMP is fully supported by GRMON/GRMON2 debug tools
 - Complemented by standard RTOS trace tools

Prototypes

- Functional prototype on evaluation board is expected to be available Q2 2012
 - Will not include HSSL, nor large on-chip RAM
 - Includes both DDR2 and SDR SDRAM on separate pins
- FPGA prototypes with reduced NGMP designs available now
 - Xilinx ML510, Synopsys HAPS-51, TerASIC DE2
 - Aeroflex Gaisler GR-CPCI-XC4V with LX200 FPGA
 - Aeroflex Gaisler GR-PCI-XC5V

Thank you for listening

For updates and to download the NGMP specification, please see: http://microelectronics.esa.int/ngmp/ngmp.htm

Extra: Fault-Tolerance Summary

- Fault-tolerance in the NGMP system is aimed at detecting and correcting SEU errors in on-chip and off-chip RAM
- L1 cache and register files in LEON4FT are protected using parity and BCH
- L2 cache will use BCH
- External SDRAM will be protected using Reed-Solomon
- Boot PROM will use BCH
- RAM blocks in on-chip IP cores will be protected using BCH or TMR, smaller buffers can be synthesized as flip-flops
- Flip-flops will be protected with SEU-hardened library cells if available or TMR otherwise

Extra: Improved Debugging Support

The NGMP has improved debugging support compared to the LEON2FT and many existing LEON3 implementations. The new features include:

- Several high-speed debug interfaces
- Non-intrusive debugging through dedicated Debug bus
- AHB trace buffer with filtering
- Instruction trace buffer with filtering
- Hardware data watchpoints

EROFLEX

Extra: Improved Profiling Support (0)

The NGMP has improved profiling support compared to the LEON2FT and LEON3. The new features allow to measure the following metrics:

- Processor statistics
 - Instruction/Data cache/TLB miss/hold
 - Data write buffer hold
 - Total/Integer/FP instruction count
 - Branch predication miss
 - Total execution time (excluding debug mode)
 - Special filters allow counting number of:
 - Integer branches
 - CALL instructions
 - Regular type 2 instructions
 - LOAD and STORE instructions
 - LOAD instructions
 - STORE and instructions

EROFLEX

Extra: Improved Profiling Support (1)

In addition the processor statistics you can also measure:

- L2 cache hit/miss rate
- AHB utilization
 - AHB utilization per master
 - Total AHB utilization
- Interrupt time stamp unit allows users to measure interrupt handler latencies

AEROFLEX

Extra: Target technology

- Baseline is ST 65nm space technology
- Requirements
 - DDR2 PHY
 - I/O standards: LVTTL, SSTL, PCI
 - Memory:
 - 1-port RAM, 2-port RAM
 - High density 1-port RAM/SDRAM
- Backup options:
 - UMC 90 nm with DARE library
 - Tower 130 nm with Ramon library
- FP target technology: eASIC Nextreme2

