
ESA Workshop on Avionics Data, Control and Software Systems

Avionics/GNC Architecture and Sensors Suite for Exploration RT

Experience and views of CGS on optimization
of Avionics/GNC/Sensors for Exploration

(Planetary Landing)
3 Nov 2010

1

Contents

 Overview of Developments for Exploration GNC at CGS
 Innovative Lander Navigation Concepts

 Relative Navigation
 Absolute Navigation

 Innovative Lander Guidance Concepts

2

Overview of Developments for Exploration GNC at CGS

 Since 2001 CGS is pursuing research activities in the field of vision-based GNC
algorithms for Space Exploration, aimed at identifying, developing and testing innovative
and high-performance concepts

 The main considered application is on future planetary landers (“NAVIGATOR” project)
 The developed algorithms were tested using an in-house software simulation system and

test bench
 Mars and Moon mission scenarios considered
 Main sensor combination: Camera + IMU
 All key GNC functions developed and tested:

 Image Processing
 Navigation
 Terrain DEM Generation
 Hazard Map Generation
 Landing Site Selection
 Trajectory Generation and Control

3

 Image Processing
 Various techniques for

extracting and tracking
“feature points” or “landmarks”
across a sequence of images

 Navigation
 Utilizing a Navigation Filter for

obtaining real-time vehicle
state estimates

 Both “Relative” and “Absolute”
Navigation modes considered

 Terrain DEM Generation
 Producing and updating an

elevation model of the
observed terrain during the
descent

Overview of Developments for Exploration GNC at CGS

4

 Hazard Map Generation
 Identifying the position of

“hazards” (e.g. boulders) on
which the vehicle must not land

 Landing Site Selection
 Autonomous determination of

the “optimal” landing site
 Taking into account DEM and

Hazard Map data, together with
fuel consumption

 Trajectory Generation and Control
 Determination of the trajectory

to reach the chosen site
 Thruster command generation

for realizing the trajectory

Overview of Developments for Exploration GNC at CGS

5

 In general, there are many commonalities
between lander GNC algorithms, and the
ones for “terrestrial” vehicles (e.g. UAVs).

 In the frame of the NEMO project, a multi-
purpose GNC SW framework has been
established, for both space and terrestrial
vehicles, and the key “common” building
blocks were developed.

 Main “terrestrial” mission scenarios
considered:
 Forest Fire Detection and Monitoring:

here an UAV is used for autonomously
detecting and investigating fire zones

 Manned Landing Support: a LIDAR-
based system for aiding the pilot in
difficult conditions (high obstacles and
low visibility)

Overview of Developments for Exploration GNC at CGS

6

 An utility for generating simulated images of
planetary landscapes (Mars and Moon) has
been developed for testing GNC Algorithms
for Landers and Rovers.

 “Offline” step: Terrain Generation and
Preparation
 Processing pre-existing terrain data (e.g.

Mars Global Surveyor MOLA data, or
SRTM data)

 Fractal detail, boulders, dunes and craters
 Simulating thermal erosion (if necessary)

and shadows
 “Online” step: Image generation

 Dynamic Level of Detail (LOD) control, to
ensure image crispness from ~10 km to
~1 m, in-house renderer utilized

Overview of Developments for Exploration GNC at CGS

Planetary Scene Generator: Sample Images

8

Lander Navigation Development: Objectives

 In the frame of our activities, a “clean sheet” approach has been used for the development
of the lander navigation function, called “QuickNav”, with the key targets of reaching:

 a simple overall architecture, using a limited number of sensors with high TRL

 baseline: a single camera and an Inertial Measurement Unit

 high performance and robustness

 high accuracy of the obtained state estimates

 high robustness w.r.t. input errors

 low computing requirements

 straightforward implementation on existing space-qualified computing hardware

 Furthermore, high-flexibility solutions were sought, for example in terms of:

 ability of interfacing with various categories of sensors (e.g. altimeter, scanning LIDAR)

 minimization of system-level impacts (e.g. no need for “initialization” state estimates)

9

Relative Navigation

 Here the Navigation function has to produce the state estimates without the utilization of
onboard maps / known landmarks; the state has to be expressed in a “Relative” terrain-
fixed reference frame; also the gravity vector direction (utilized for trajectory generation and
control) has to be computed

 It is very important to have a robust and accurate method for obtaining these state
estimates, since the estimation errors adversely impact all the “downstream” functions of
the GNC processing chain

 Simple “baseline” computing architecture (but also easily expandable) considered here:

 Image Processing: identifies and
tracks “unknown” features / landmarks
on images, producing a series of
“Feature Tracks” (FTs);

 reference: FEIC (Univ. of Dundee)

 Navigation Filter: produces real-time
state estimates by merging FTs and
IMU data

10

 Simple 1D case considered for comparison:

 Vertical descending motion, single tracked point (P)

 Measured: = arctg(D / r) (from FTs), a = r’’ (from the IMU)

 Key objective: estimate D

 D can be obtained with:

 q’’ can be estimated from q, so:

 t must be low (e.g. ~0.1 sec) for a good approximation of q’’.

 However, since very small angle differences have to be evaluated,
the signal-to-noise ratio of q(t) can become quite low (even <<1!)

 Clearly, by filtering and merging many single estimates of D the
SNR will improve, but: is there a different way of computing a
single estimate of D?

Relative Navigation: “Classical” approach

P

t-t
t

t+t

r(t)

D

v(t)

(t)))()(2)((
)(''

2)(
1 ttqtqttq

trD
t

lander position

''
''''''

)tan(
1

q
rD

D
rq

D
rq

11

 The “classical” approach is based on differential expressions is
it possible to increase the accuracy by using integral expressions
instead?

 3 instants considered: t1 = t2 - T, t2, t3 = t2 + T (i.e. T instead of t)

 By considering some integrals of the acceleration,

the following expression for D can be obtained:

 Since no approximations have been used in the above expression,
it is possible to increase the “temporal baseline” (i.e. the T value)
from ~0.1 to ~1 sec that allows a reduction of the SNR (and of
the overall estimation error) of ~10x

Relative Navigation: “QuickNav” Approach

)()(2)(222

321

TtqtqTtq
TAAAD

P

t-T

t

t+T

r(t)

D

v(t)

(t)

lander position

2

1

3

2 2

2

1 1

)(,)(,)(321

t

t

t

t

t

t

t

t

t

t

daAdtdaAdtdaA

12

Relative Navigation

Non-simplified “3-D Vision-Based Navigation” algorithm overview: General characteristics

 Descent time interval: [t0, t1], initial reference frame origin chosen in order to have r(t0) = 0

 Three-step operation: Pre-processing step,
Core step, Post-processing step

 Inputs to the Core step:
 Profile of am(t) = a(t) - g (i.e. the

“measurable” part of the acceleration)
for t [t0, t1]

 A series of “feature tracks”, expressed
using the direction vectors ni(t)

 Outputs of the Core step:
 An estimate of the velocity vector at the

beginning of each “feature track”, v(tA)
 An estimate of the gravity acceleration

vector, g

 Using v(tA), g and the am(t) profile, it is
possible to reconstruct the entire position
and velocity profile

ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

13

Non-simplified “3-D Vision-Based Navigation” algorithm overview: Core step

 For each feature track, starting at t = tA and
ending at t = tB, the following points are
considered:

 rA, rB and rM: vehicle positions respectively
at t = tA, t = tB and t = tM = (tA + tB) / 2

 rgi: tracked point on the ground

 The following position differences are defined
then:

 rA = rM - rA

 rB = rB - rM

 The first operation involves the computation
of the directions of these two vectors, i.e.

 uA = rA / lA, where lA = | rA |

 uB = rB / lB, where lB = | rB |

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

14

Non-simplified “3-D Vision-Based Navigation” algorithm overview: Core step (continued)

 In order to compute uA, the following is done:

 For each feature track starting before t=tA, and
ending after t=tM, the plane containing the following
points is defined: rA, rM and rgi* (the point tracked by
that track)

 Since uA is contained in all the planes of the resulting
set, it can be obtained by computing the vector that
is “most orthogonal” (in the least-squares sense) to
the set of vectors {bj} that are normal to these planes

M

j jJ
1

2)ˆ()(ubu

 In order to minimize that function, subject to the constraint |u| = 1, it necessary to find the points,
on the unit sphere, for which the gradient of J(u), J(u), is perpendicular to the sphere’s tangent
plane. That means that J(u) will have to be parallel to u, i.e. J(u) = k u for some scalar k. The
expression for the gradient of J is J(u) = W u, where W is a matrix obtained from the components
of the vectors bj. Consequently, uA will have to satisfy the condition W uA = k uA for some k. In other
words, uA is found among the eigenvectors of W.

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

15

Non-simplified “3-D Vision-Based Navigation” algorithm overview: Core step (continued)

 At this point, assuming that also uB has been estimated (using the
approach used for uA), it is possible to consider two triangles A and
B (in general not coplanar) that have, respectively, the following
vertices:
 rG, rM and rA

 rG, rB and rM

 The two triangles share a side of length l* (the value of l* is not
known at this stage by the algorithm)

 The values of A, B, A, and B can be obtained by computing the
angles between some of the unit vectors (whose values have been
previously computed)

A = arccos(uA nAg), B = arccos(-uB nBg)
A = arccos(nAg nMg), B = arccos(nBg nMg)

 Using these values, it is possible to compute the value of , which is
the ratio between lB and lA:

)sin()sin(
)sin()sin(

AB

BA

A

B

l
l

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

Non-simplified “3-D Vision-Based Navigation” algorithm overview: Core step (continued)

 Since

it is possible to introduce

and write

 By combining these with the equation = lB / lA, the following equation is obtained

 This expression can be simplified by using the following values (all computable by the algorithm):

 The resulting equation is
s0 lA = s1 + s2 g

16

2
2
1)(TdtdT

M

A A

t

t

t

t
mAA gavr 2

2
1)(TdtdT

B

M M

t

t

t

t
mMB gavr

M

A

t

t
mAM Tdtt gavv)(

2
2
1 TT II

AMAA ghvr 2
2
3

** TTT II
MBi

I
AMiAB ghhvr

M

A

t

t
m

I
AM dtt)(ah dtd

M

A A

t

t

t

t
m

II
AM)(ah dtd

B

M M

t

t

t

t
m

II
MB)(ah

2
*ˆˆ i

II
AM

II
MBi*

I
AMAAAB TTll ghhhuu

AB uus ˆˆ0 II
AM

II
MBi

I
AMT hhhs *1

2
*2 iTs

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

Non-simplified “3-D Vision-Based Navigation” algorithm overview: Core step (continued)

 By using also the condition |g| = gS, it is possible to obtain a single quadratic equation with lA as the
unknown:

|s0|2 lA2 - 2(s0s1) lA + |s1|2 - gS s2
2 = 0

 This equation has two solutions for lA; the correct one can be identified via simple checks of the
resulting estimates (e.g. typically the “wrong” root will lead to gravity pointing upwards).

 Once lA is obtained, then the following values can computed in sequence: (by using the previously
shown expressions): g, lB, rA, rB and vA. Finally, v(t1) can be obtained simply by integration:

 The velocity profile is simply computed by back-integrating the estimate v(t1) using am() and g:

 Since rA(t0) = 0 by definition, the position profile is then simply computed by integrating velocity:

17

1

)()()(11

t

t
AmA

A

ttdttt gavv

t

t

AA
m

AA ttdtt
1

)()()()(11 gavv

t

t

AA dt
0

)()(vr

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

 By adding an altimeter, it is possible to
increase the state estimation accuracy,
by providing an alternative method for
estimating one of the key involved
values, lA (the norm of rA):

lA = | rA | = | rM - rA | = | r(tM) - r(tA) |

 In the figure, the orientation of the
altimeter is indicated with the vector ualt

 The angle between ualt and ua is indicated
with ; it can be obtained using only the
feature tracks and gyro measurements

 Since 90°, lA = h / cos

 In turn, h is obtained with h = hA - hM,
where hA and hM indicate the altimeter
measurements at tA and tM respectively

18

Non-simplified “3-D Vision-Based Navigation” algorithm: Addition of an altimeter

Relative Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

Additional information about the algorithm can be found in the paper “NEMO: an Advanced Cross-Application
Vision-Based GNC SW Platform and Simulator” (Vukman et al.), presented at IAC 2010, Prague

19

 “Qualitative” advantages of the QuickNav algorithm, w.r.t. “Classic” (based on the Kalman
Filter and its variants) solutions:

 No need for first guess/initialization values (like the initial vehicle velocity or height) at the
beginning of the filter operation;

 No possibility of filter divergence/instability

 No approximations that could reduce performance (e.g. linearizations) were utilized

 It is simple to evaluate the effect of input data errors on the overall filter accuracy - no
long testing campaign required for that

 High robustness to IMU noise, and to “outliers” in the feature tracks

 All the operations that are performed by the algorithm are relatively simple (e.g. no
operations on large matrices required) and therefore easy to execute in real-time without
requiring excessive computing power

 The estimation of the direction of the local vertical - which is essential for Guidance and
Control - is done accurately, also when no altimeter is present

Relative Navigation: Features and Performance

20

 The validation of the algorithm has been performed at Proof-of-Concept level, using an initial
MATLAB implementation of the algorithm, and a software test bench for generating
simulated filter inputs in open loop; the current TRL reached is 3

 The outcome of the validation activities, involving a series of Monte-Carlo tests, has shown
that the “QuickNav” Navigation Filter also goes well beyond the (E)KF-based filters for what
concerns key “quantitative” metrics, i.e:

 State estimation accuracy (velocity/position error): >10x error reduction achieved

 Required computing power: >10-50x reduction achieved

 Main testing scenario: Mars Landing, key features:

 Initial altitude: ~5 km, initial velocity ~100 m/s (~20°w.r.t. the vertical),

 Powered descent begins after parachute jettison, after ~40 sec

 For the Image Processing block, FEIC (Feature Extraction and Image Correlation)-like
performance has been assumed

 The trajectory is contained in the x-z plane (z is vertical)

Relative Navigation: Features and Performance

21

Relative Navigation: Features and Performance

 Key value: velocity estimation error (the position error is proportional to it)

 1 and 2 values plotted, for both absolute (norm of the error vector) and relative (ratio
between the norm of the error vector, and the true velocity norm) errors

 It can be seen that after 15 seconds of filter operation, the error stays always below 1% (2)

 Camera+IMU combination used for these tests; an altimeter would further reduce the errors

t [sec] t [sec] t [sec]

2

1

parachute
jettison 2

1

22

Absolute Navigation

 Here the Navigation function has to produce the state estimates expressed in an
“Absolute” terrain-fixed reference frame (ARF), that has been identified before the mission;
it is possible to realize the “pinpoint” precision landing functionality (i.e. landing at a pre-
specified landing zone)

 Here a set of pre-stored maps (DEMs + orthoimages) / known landmark positions is used

 Two-step approach (for a Moon landing mission):

 Coarse localization: here the onboard-obtained orthoimage is compared with pre-stored
one, to obtain the x,y position components; then, also the z coordinate is computed

 Fine localization: here, a set of “known landmarks” is
identified on the images, and using the knowledge of
their position in the ARF, the lander position is
obtained; the input data involved is the following:

 rg1, rg2, ... rgN: positions of the “known landmarks”

 n1, n2, ... nN: apparent directions in which these
landmarks are seen; these define N semi-rays

23

Absolute Navigation

 Classical approach:

 The (Extended) Kalman Filter (or one of its variants) is
applied; ni = hi(r, ri) is the key measurement equation

 The initial vehicle state uncertainty, expressed via a
covariance matrix, gets continuously reduced throughout
the descent by using the measurement data

 Approach considered here:

 A maximum-likelihood estimator is built for obtaining single
estimates of r given a set of {rgi} and {ni}

 Result: r is obtained by minimizing

where di(r) is the distance between the i-th semi-ray and r;

 That is easy, since f(r) = Ar + b, where A is a 3x3 matrix

 Then, using the estimates of r in time, the velocities are
estimated with a “wide baseline” approach

)()(
1

2 rr

S

i idf

 Sequence of steps for performing Absolute Navigation:

1. Utilization of the "Base" QuickNav algorithm for determining the state profile in I=[t0, t1] in FRF
(and the gravity vector g) using the camera images and IMU measurements during that period

2. Determination of the rotation angle between FRF and PRF as the difference between the velocity
heading, (i.e. the velocity direction in the x-y plane) in FRF and PRF, for a t* before t0:

 = PRF(t*) - FRF(t*)

24

Absolute Navigation

 where:

 PRF(t*) can by obtained from pre-entry
orbital parameters

 FRF(t*) can be obtained by back-
integrating vFRF(t0) (calculated by the
"Base" QuickNav algorithm) using the
acceleration measurements for t [t*, t0]

 consequently, it remains only to determine the
coordinates, in PRF, of the FRF origin, i.e.

rO = rPRF(t') - rFRF(t'), for t' I

ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

3. The determination of rO = rPRF(t') - rFRF(t') is performed in two steps:

a) Coarse estimation of the x and y components, i.e. r0x and r0y:

a) An orthoimage (i.e. graylevel map in the xy plane) of the terrain observed by the camera,
expressed in FRF, is calculated (by projecting the acquired image(s) on the DEM or terrain
plane, computed by the onboard GNC SW)

b) That orthoimage is matched (using e.g. interest points) against the pre-stored map
(expressed in PRF); the search area size depends (also) on the IMU dead-reckoning error

c) The optimum match corresponds to a (x,y) displacement equal to (r0x,r0y)

b) Coarse estimation of the z component, i.e. r0z, by comparing the z values of the onboard map (in
PRF) with the z values of the DEM (or terrain plane) computed by the onboard GNC SW in FRF

c) Fine estimation of the x, y and z components of rO

a) A set of "landmarks" on the observed terrain is chosen, for which the position on PRF is
known (since stored on the onboard map); these are indicated with rg1, rg2, ... rgS

b) The position of these landmarks on the acquired images, pi(t'), is determined (the coarse
estimation of rO, is used for determining the centre of the search space on the images)

c) Since the attitude of the lander in PRF is available, it is possible to compute from pi(t') the
associated direction unit vector ni(t') (for each i {1, ... S}) in the PRF

25

Absolute Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

26

 At this point, the following is available:

 a set of landmark positions, rg1, rg2, ... rgS,
expressed in FRF

 a set of corresponding direction unit vectors,
n1(t'), n2(t'), ... nS(t') (expressed in FRF), that
indicate the direction of each landmark, w.r.t.
the position of the lander, r(t'); in other words,

(Note: in order to simplify the notation, the
indication of time t' will now be omitted)

 Consequently, it is possible to define, for each landmark - vector pair, i.e. rgi and ni, a semi-ray qi

qi(li) = rgi + ni li
such that, in absence of errors, each semi-ray at a certain point intersects the lander position r; i.e.

qi(li*) = r, for a certain li*

 Clearly, in practice these semi-rays will have no intersection

|)'(|
)'(

)'(ˆ
t
t

t
gi

gi
i rr

rr
n

Absolute Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

27

 Consequently, in order to find the point r in practice,
it is useful to look to the point that is the most
probable

 The function for minimization that is obtained is the
following:

where di(r) is the distance between the i-th semi ray
and a point r; consequently,

where qi(li*) is the point of the semi-ray qi that is
closest to r; for that point, the value of li* is given by

 Using that expression, it is possible to write di(r) as

where Bi is a 3x3 matrix:

)()(
1

2 rr

S

i idf

|*)(|)(iii ld qrr

)(ˆ* gi
T
iil rrn

|)(||)(ˆˆ||*)(|)(giigi
T
gigigiiii ld rrBrrnnrrqrr

T
gigii nnIB ˆˆ

Absolute Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

28

 Therefore,

where Ci is a symmetric matrix:

 The gradient of f(r) is therefore given by

where

 Therefore, the value of r for which f(r) is minimum can be obtained with the expression

 That value is the position of the lander for t=t' in the Planetocentric reference frame, i.e. rPRF(t'), and
after subtracting rFRF(r') (obtained from the "Base" QuickNav algorithm) from it, the value of r0 (i.e. the
position of the FRF origin, in the PRF) is obtained

 The value of r0, together with the value of , allow the transformation of the FRF state profile in the PRF
state profile; that is the final output of the "Absolute Navigation" functionality

)()())(())(()(2
gii

T
gigii

T
giiid rrCrrrrBrrBr

i
T
ii BBC

hDrrrCrr
)(2))(()(

11
2 S

i gii
S

i idf

S

i i1
2 CD

S

i gii1
2 rCh

hDr 1

Absolute Navigation ALGORITHM IN-DEPTH DESCRIPTION (BACKUP SLIDES)

29

General considerations

 Basic descent dynamics: a(t) = FT(t) / m(t) + g, where FT(t) = (FTx(t), FTy(t), FTz(t))

 Main thrust direction is controlled via attitude: nx(t) = FTx(t) / FTz(t) and ny(t) = FTy(t) / FTz(t)

 Initial state: r(t0), v(t0), finding the control u() to meet the target condition r(tf) = rsite, v(tf) = vsite

 Trajectory parameterization (e.g. from optimal control theory): u() = (s)

 The determination of the trajectory can be reduced to non-linear zero-finding, i.e. the
computation of sland such that with uland() = (sland), the target condition is met

 Typically the chosen parameterization has to take into account various criteria / aspects; in
particular it has to allow efficient retargetings (i.e. re-generation of the trajectory after a
significant modification of the x,y components of rsite)

Lander Guidance: Retargeting

 A high retargeting capability can be achieved via a
minimum-time/fuel control in the x and y components

 Result: “bang-bang”-like profiles of nx and ny

 Mars case choice: u = (nx, ny, FTz), since FTz - |FT|

30

 Due to the parametrization, the finding of uland() = (sland), often
implies the utilization of a “shooting” method (e.g. via Netwon-
Raphson), generating a trajectory for each attempted s.

 Problem: the evaluation of r(tf) and v(tf) for each s can be time-
consuming (due to numerical processing and integration of u())

 Potential solution: utilization of polynomial functions: only the
coefficients (c0, c1, ... cN) are stored and processed; if p(t) and q(t)
are polynomials, then their product and integrals are polynomials

 However: in practice, the required profiles (e.g. the “bang-bang”
shapes of nx and ny) often require a large number of coefficients

 Solution: instead of simple polynomials, use piecewise polynomial
functions (the above properties, used for polynomials, that enable
“analytical processing”, are also valid for such functions)

 When compared to the numerical approach, a ~100x reduction of
the number of operations for each retargeting has been obtained

Lander Guidance: Retargeting

31

Conclusions

 One of the targets of our Exploration GNC developments is the identification of algorithms
that allow an optimization of the overall GNC subsystem architecture and its efficiency

 In particular, for what concerns the lander navigation function, the “QuickNav” concept
has been identified (by using a “clean sheet of paper” approach, and relying on
customized solutions) and validated at proof-of-concept level

 Such a concept allows:

 a simple overall architecture:

 baseline sensor set: camera and IMU

 processing chain: Image Processing + Navigation Filter

 high robustness, flexibility and performance; in particular:

 efficient hybridization of camera and inertial data (e.g. <1% estimation error at 2)

 low computational demands (~1-5 MFLOP/sec), no risk of divergence

 Its utilization can have both subsystem-level and system-level benefits

