

THALASSIM

Modelling Standardisation of the Electrical Interfaces

ESA Workshop on Avionics Data, Control and Software Systems (ADCSS) ESTEC, Noordwijk, The Netherlands,

2-4 November 2010

THALES ALENIA SPACE Cannes

November 2nd, 2010

All rights reserved, 2008, Thales Alenia Space

THALES

Page 2

CONTEXT
OVERVIEW
MODELLING OF ELECTRICAL UNIT I/F
BENEFITS OF THE STANDARDIZATION

- THALASSIM is a simulator product line used at THALES ALENIA SPACE France to support a large range of facilities:
 - High Fidelity Simulator: equivalent to a Functional Engineering Simulator
 - Software Verification Facility (SVF)
 - Platform Simulator (SimPF): equivalent to a Functional Validation Test bench
 - Avionic Test Bench (ATB and SimATB): equivalent to a Spacecraft AIV Simulator
 - Dynamics Spacecraft Simulator (DSS): equivalent to a Training, Operation and Maintenance Simulator
- THALASSIM is based on the K2 simulation infrastructure which provides all the services needed to make and to exploit a simulator.
 - These services allow the assembly of a simulator from instances of models and the definition of the communication links between the instances.
 - The communication mechanisms used in the K2 infrastructure are data flow and event based.

- In order to increase reusability and efficiency while reducing cost and scheduling time, and thereby increase competitiveness in the development of our simulators, THALES ALENIA SPACE chose to:
 - raise the level of standardisation in the modelling of electrical unit interfaces
 - define a software interface control document applicable to all equipment/unit models
 - have a high level of fidelity with regard to the electrical interfaces of real equipment/unit
- This presentation is intended to emphasise the standardisation of electrical interfaces for the equipment/unit required for the Constellations, Telecommunication and Observation & Science Spacecraft product lines. These lines include:
 - Spacebus 4000 and Alphabus product lines
 - Global-Star 2, O3B Constellation
 - Sentinel-3

This standardisation covers all the main electrical interface types

- Telecommand
- Telemetry data
- OBDH bus
- B1553 bus
- Spacewire link
- System alarm
- Digital Relay acquisition
- Clock signal
- Low / High Level command,
- Power supply
- Digital serial
- Analog,...

of THALES ALENIA SPACE spacecrafts

ThalesAlenia

A Thales / Finmeccanica Company Space

- Electrical I/F
 - SBDL_TC_IN signals
- Simulation approach
 - Asynchronous simulation
 - TC interface is implemented by using an activation routine
 - This activation is of SBDL_TC_IN type. The data sent on this activation is a CLTU
- Data structure [K2_TYPE_ICD]
 - Parameter record

Name	Description	K2 Type	Unit
TC_Data	A byte array containing the CLTU (306 bytes	K2::Char [512]	
	max) and some synchronization bytes		
TC_Data_Size	Size of the TC_Data array (<=512)	K2::UInt16	Byte
TC_Bit_Rate	Bit rate of the TC sending	K2::UInt32	Bit / s

Results record

Empty

Page 7

Telemetry outputs

- Electrical I/F
 - SBDL_TM_OUT signals
- Simulation approach
 - Asynchronous simulation
 - TM interface is implemented by using an activation routine
 - This activation is of SBDL_TM_OUT type. The data sent on this activation is a CADU.
- Data structure [K2_TYPE_ICD]
 - Parameter record

Source side (SMU transmitter)

User side (TM receiver)

Name	Description	K2 Type	Unit
CADU	A byte array containing the CADU	K2::Char [1024]	
CADU_Size	Size of the CADU (=1024)	K2::UInt16	Byte
TM_Bit_Rate	Bit rate of the TM sending	K2::UInt32	Bit / s

Results record

Empty

Page 8 50 Ω 017 54AC86 System alarms +5V 4,75kΩ R0805 IN P Electrical I/F D-1210 R1206 SBDL or EVBL signals 1nF C0805 = 54AC86 IN M4.75ka R0805 Simulation approach User side Asynchronous simulation Source side (SMU receiver) Each alarm is an activation (STR transmitter) call point / routine of STR N SMU EVBL_ALARM type ALARM CRM1_EVBL_N_P1 The information sent on this activation is a boolean data : CRM1 EVBL N P2 TRUE when the alarm is CRM1_EVBL_N_P3 set ON CRM1_EVBL_R_P1 STR R FALSE when the alarm is CRM1_EVBL_R_P2 ALARM set OFF CRM1 EVBL R P3 CRM2 EVBL N P1

- Data structure [K2_TYPE_ICD]
 - Parameter record

Name	Description	К2 Туре	Unit
Alarm_ON	True when the alarm is ON, else False	K2::Boolean	

- Results record
 - Empty

- IZDALO DVDI NI DO

Launcher and umbilical interfaces

- Electrical I/F
 - DR_ALARM signal
- Simulation approach
 - Asynchronous simulation
 - Each alarm is an activation call point / routine of DR_ALARM type
 - The information sent on this activation is a boolean data :
 - TRUE when the alarm is set ON
 - FASLE when the alarm is set OFF
- Data structure [K2_TYPE_ICD]
 - Parameter record

Name	Description	К2 Туре	Unit
Alarm_ON	True when the alarm is ON, else False	K2::Boolean	

Results record

Empty

Source side (Strap)

User side (SMU receiver)

Page 9

Clock and synchronization interfaces

- Electrical I/F
 - CLK signal
- Simulation approach
 - Asynchronous simulation
 - A model needing a clock signal has to implement an activation routine and connect it to the relevant activation call point
 - No specific information is sent with this activation
- Data structure [K2_TYPE_ICD]
 - Parameter record
 - Empty
 - Results record
 Empty

- Low and High Level Command
 - Electrical I/F
 - LLC / HLC signal
 - Simulation approach
 - Asynchronous simulation
 - Each Low / High Level Command is an activation call point / routine of LLC-HLC type
 - The information sent on this activation is the pulse command duration
 - Data structure [K2_TYPE_ICD]
 - Parameter record

Name	Description	K2 Type	Unit
Pulse_Duration	Duration of the signal pulse	K2::Duration	

Results record

Empty

1553 Bus

- Electrical I/F
 - 1553 signal
- Simulation approach
 - Asynchronous simulation
 - the 1553 bus is implemented by using the K2 bus routine / call point mechanism, thus with activation routine (with an address) / call point (of bus type)
- Data structure [K2_TYPE_ICD]

Parameter record

Name	Description	K2 Type	Unit
1553_Command_Word	Command word (see structure below)	K2::UInt64	
1553_Data_Word	Array of 31 data words (see structure of each word below)	K2::UInt16 [31]	
1553_Data_Word_Size	Number of data words used in the message	K2::UInt8	

TxRxA

TxRxA

TxRxB

TxRxB'

BU61582X1

Results record

Name	Description	K2 Type	Unit
1553_Status_Word	Status word (see structure below)	K2::UInt16	
1553_Data_Word	Array of 32 data words (see structure of each	K2::UInt16 [32]	
	word below)		
1553_Data_Word_Size	Number of data words used in the message	K2::UInt8	

Page 12

THALES

Spacewire link

- Electrical I/F
 - Spacewire signal
- Simulation approach
 - Asynchronous simulation
 - Spacewire link is implemented by using the K2 bus routine / call point mechanism, thus with activation routine (with an address) / call point (of bus type)

- Data structure [K2_TYPE_ICD]
 - Parameter record

Name	Description	K2 Type	Unit
Control_Flag	False for Data True for EOP/EEP markers	K2::Boolean	
Cargo	Data to transfer	K2::UInt8	

- Results record
 - Empty

Unique Standard for simulation of the electrical interfaces

- To improve communication/collaboration between users and between projects
- To rationalize the developments
 - Direct reusing of models phase to phase and project to project
- Based on a collaborative work controlled by a design authority
 - To take into account new electrical interfaces :
 - Example : I/F Spacewire need has been developed for Sentinel-3 and will be re-used on Iridium project
 - To take into account all the range of simulator :
 - FES / SVF / SC AIT Simulator / FVT / AIV Simulator / TOMS

THALASSIM Modelling standardisation is very different to SSRA (System I/F Network)

- Developed before SSRA
- Based on Event links & Field links (≠ I/F links in SSRA)
 - Solution accessible/comprehensive for final users (≠ computer science experts)
 - Suitable w.r.t the usual use cases
- Effort to be compatible with SSRA is significant w.r.t benefits

Page 14