

Model-Based IV&V for an Operation Procedure

ADCSS2010@ESA ESTEC

New Approaches for Verification and Validation of Avionics

Tsutomu MATSUMOTO*1,

Masakazu TAKASE*2, Yuko MIYAMOTO*1, Masa KATAHIRA*1 *1 Japan Aerospace Exploration Agency (JAXA) *2 Mitsubishi Space Software Co.,Ltd. (MSS)

November 02, 2010

Contents

- Background
- Target System
- Modeling
- Simulation
- Lessons Learned
- Conclusion and Future Work

Target System

Target System (2/2)

Modeling - Controller and Equipment Model -

Onboard Equipment Model <sample>

If power status of the valve is "ON" and valve status is "OPEN", then Cabin Pressure decreases 1 unit value per second.

Controller Model <sample>

If sensor value 1 is over upper threshold and sensor value 2 is over upper threshold, then sensor value 3 becomes representative value, else Automatic Relief becomes non-executable.

Modeling Environment : Microsoft Visual C++

Simulation(1/3) - Case Example -

Automatic Cabin Air Relief

If cabin pressure goes over upper threshold, cabin air is released for depressurization by opening relief valves until cabin pressure falls down below lower threshold.

open upper [Abstract of Operation Procedure] Set "Status of Cabin Pressure Monitoring to ENA lower Set "Status of Cabin Pressure Sensor" to NORMAL 0 kPa Set "Status of Automatic Cabin Air Relief to ENA [sensor] [valve] Set "Automatic Cabin Air Relief" to OPERATIVE Monitor "Value of Air Pressure Sensor" Monitor "Status of Air Pressure Sensor" close upper Monitor "Status of Valve (OPEN/CLOSE)" lower 0 kPa [valve] [sensor]

Simu		AX A						
- Result -				expectation		si	mulation	4
	Value							
L/N コマンド変数名	設定値	テレメトリ変数名	期待住	実際の値	拥有		補足	
1					予めキ	ャピン	圧力を記録する	
2	8	Cabin_Pressure_1	-	226	記録の	24		
3	1	Cabin_Pressure_2	-	226	記録の	24		
4	2	Cabin_Pressure_3	-	226	記録の	24		
5		MCU1_AutoRlf_EnaSt	-	INH	記録の	74	2	2
6		MCU2_AutoRIf_EnaSt	-	INH	記録の	24		
7	_	MCU1_AutoRIT_ExecSt	-	OFF	記録の	7		
8	_	MGUZ_AUTOKIT_EXECST	-	UFF	記録の	07		
9		VRV_AI_SL	-	Open	記録の	7.	openなのは初期設定のため。	
11	-	VRV_DI_SU		Olean	記録の	7	openなのは 初期設定の ため。	
12		VRV_A2_SL		Close	記録の	24		
13		VRV_DZ_St		01036	al sk v	07		
14 MCIII PLC Prc Cab Mon Ena								
15 MCU2 PLC Prc Cab Mon Ena	1		+ +		cah	in r	pressure monitoring · FNA	
16	-	MCU1 PLC Prc Cab Mon st	ENA	ENA	- Cub			
17	_	MCU2 PLC Prc Cab Mon st	ENA	ENA			R=2. ENAからENAのためステータスの変化は判断でき	ない。
18		MCU1 Press Snsr1 St	NORM	NURM	cah	in r	rossuro sonsor ·	
19		MCU2_Press_Snsr1_St	NORM	NORM	Cab	F	1 essure sensor .	
20		MCU1_Press_Snsr2_St	NORM	NORM		RM.	Δ1	
21		MCU2_Press_Snsr2_St	NORM	NORM			R=2	
22	2	MCU1_Press_Snsr3_St	NORM	NORM	2	23	R=2	
23	8	MCU2_Press_Snsr3_St	NORM	NORM		8	R=2	
24	ŝ.	MCU1_PLC_Htr_St	_	0	記録の	7	R=2,内部データの初期値が0。	
25	2	MCU2_PLC_Htr_St	-	0	記録の	24	R=2, 内部データの初期値が0。	
26 MCU1_PLC_Htr_Flt_Sel							2	2
27 MCU2_PLC_Htr_Flt_Sel					-			
28	_	MCU1_PLC_Htr_St	FLI	FLI	_		R=4	
29	_	MCU2_PLC_Htr_St	FLI	FLI	_		R=4	
30 MGUT_AT_RelT_EnaInn_Ena	_		+ +					
31 MGU2_At_Relt_Enainh_Ena	_	NOUL Ast-DIE Frach	TNA	ENA .	auto	oma	atic cabin air relief : ENA	
22		MCU12 AutoPlf EngSt	ENA	ENA				
34 MOULT At Polf Evo Enc	-	MUUZ_AUTOKIT_ENAST	ENA	ENA		5	N=0	
35 MOUL AT DOLF EVA EVA	2							
36 36 36 36 36 36 36 36 36 36 36 36 36 3	<u>.</u>	MCIII AutoPlf ExecSt	ON	ON	auto	oma	atic cabin air relief : ON	
37	-	MCII2 AutoRIF Execst	ON					
38		most_naton i _ txcoot		VII	_		11-V.	
								2

Simulation(3/3) - Result (contd.) -

	expect value	ation si	imulation output
L/N コマンド変数名 設定値 テレメトリ変数名	期位	実際の値	備考 補足 Cabin pressure fails down
39 Cabin_Pressure_1 40 Cabin_Pressure_2	-	219→197 219→197	continually.
41 Cabin_Pressure_3	22	219→197	モニタ継続 R=8からR=21まで減少が続く。
42 MCU1_Press_Snsr1_St	8 4	NORM→MIN_ERR	モニタ継続 R=22
43 MCU2_Press_Snsr1_St	81 <u>-</u>	NORM→MIN_ERR	モニタ継続 R=22
44 MCU1_Press_Snsr2_St	20 4 0	NORM→MIN_ERR	モニタ継続 R=22
45 MCU2_Press_Snsr2_St	9 30	NORM→MIN_ERR	モニタ継続 R=22
46 MCU1_Press_Snsr3_St	8.00	NORM→MIN_ERR	
47 MCU2_Press_Snsr3_St	-	NORM→MIN_ERR	I If cahin pressure falls below lower
48 VRV_A1_St		Open→Close	
49 VRV_B1_St		Open→Close	7 threshold valves are closed
50 VRV_A2_St	0	Close→Open→Close	
51 VRV_B2_St		Close→Open→Close	モニタ継続 R=13, R=22
52			

Remarks about the simulation result

Static system behavior such as state transitions can be verified by comparing simulation output with expectation value.

Continuous system behavior can't be evaluated with only these static models. (e.g. software processing time)

Lessons Learned

Modeling

Setting of Abstraction Level

 In order to verify consistency between Operation Design and System Design, abstraction level of system models should be adjusted according to the Operation Design. (In the case example, Controller model was partly complemented by Detailed Design.)

Simulation

- Setting of Execution Conditions
 - Defined carefully about input/output timing of parameters (e.g. cabin pressure changes, status changes, etc.)
 - More advanced Conditions could be defined

(e.g. Multiple Failure Conditions during Operation)

November 02

Conclusion and Future Work

Conclusion

- Executable Model Based method was shown to be effective for IV&V in early development phase.
 - Consistency check between Operation and System Design with simply constructed models
 - Correction of ambiguity description in the Requirement Specification through Modeling

Future Work

- Feasibility research with other case examples
 - Interactive system behavior with multiple functions
 - Applying the method to other subsystems and projects

Thank you for your attention!