SINPLEX - Small Integrated Navigator for PLanetary EXploration

Stephen Steffes October 24, 2012 ADCSS 2012

COSINE measurement systems

Knowledge for Tomorrow

SINPLEX Project Description

- EC funded research and development project (FP7) 2 years
- Future space exploration missions target asteroids, comets, planets and planetary moons.
- Mass is one of the most critical factors for launch cost, scientific return and mission capabilities
- Main goal is to develop an innovative, low mass navigation system for planetary exploration missions
- Mass is reduced through functional integration and electronics miniturization while still allowing good navigation performance
- Also use sensor hybridization approaches to improve the performance of the complete navigation subsystem.
- The project objectives are:
 - develop a navigation subsystem architecture
 - produce a breadboard system
 - demonstrate the system's performance

Scenario 1: Moon Landing

- Based on ATON, ALHAT, **VBRNAV**, **NEXT** Lunar Descent Orbit Lander - 100m landing accuracy Powered Descent Landing Descent orbit from Powered descent Landing at chosen 100 km down to 10 from 10 km down to site with 1m/s final km altitude 2 km altitude velocity

Scenario 2: Asteroid Landing

- Based on Marco Polo and Hayabusa
- 1km diameter asteroid
- 1m landing accuracy

Scenario 3: Sample Container Rendezvous

- Based on Mars Sample Sample container Return, FOSTERNAV, spacecraft Chaser with capture mechanism HARVD - 20cm diameter container Х - 10cm relative position accuracy

CDR Design

- Highly integrated system
- Fully redundant system includes:
 - 2x 4-axis IMUs
 - 2x Laser range finders
 - 2x Star tracker cameras and processing boards
 - 2x Navigation cameras and processing boards
 - 2x On board computers
 - 2x Power distribution
- < 5kg
- 170mm x 210mm x 200mm
- 42W (nominal)

Miniaturization Through Integration

V_{DLR}

- COTS components:
 - 4x MEMS accelerometers
 - 4x MEMS gyros
 - ÅAC Microtec's µRTU
- Custom components:
 - Sensor interface
 - Mechanical structure
 - Software

Laser Transmitter cosine measurement systems

Camera Electronics

- Star tracker and nav. camera electronics
- Image processing w/ FPGAs
- Custom designed

Image Processing

- Star tracker
- Crater navigation
- Feature tracking
- Container finding (2 methods)

- Sensor data fused on board in real-time.
 - Compensates for loss of sensor performance due to miniaturization
- Navigation software distributed over several subsystems:
 - IMU : accel. & gyro compensation, high-rate integration
 - Camera electronics : image processing
 - OBC : pos, vel, attitude integration, Kalman filter
- Navigation method depends on scenario phase:
 - Inertial
 - Terrain relative
 - Container relative

Comparison to Modular COTS System

State-of-the-art	Mass (g)
1x NPAL camera	1450
1x LN-200S IMU	800
1x NEAR laser ranger	3000
1x Automous Star Tracker A-STR	3000
1x OBC695	1500
Total	9750

SINPLEX (preliminary)	Mass (g)
Housing + optics	1500
2x IMUs	150
2x Laser transmitter + receiver	1800
4x Camera electronics	500
2x OBC	150
2x PDCU	100
Total	4200

Benefits/Drawbacks of Integration

- Main technology development is integration of components
- Pros/Cons are the same as the integrated vs modular debate
- Benefits of integrated system:
 - Small, low mass, low power
 - Tuned to specific types of missions
- Drawbacks:
 - Hard to make changes
 - Less flexible
 - Higher development costs
- However, interplanetary S/C are already one-of-a-kind integrated systems. SINPLEX fits into this methodology.

SINPLEX Roadmap

- Just had CDR for breadboard system
- System components to be fabricated by March 2013
- Integrated & calibrated breadboard system ready by June 2013
- Hardware-in-the-loop testing, system performance verification until end of 2013
- Bring breadboard system to TRL 4
- Plan to develop the technology further via another EC project

