Miniaturized Components for Space Systems: Needs, Status and Perspectives

Jian Guo, Eberhard Gill, Jasper Bouwmeester, Barry Zandbergen Chair of Space Systems Engineering, Faculty of Aerospace Engineering

ADCSS 2012, ESA/ESTEC, Noordwijk, The Netherlands, 23-25 Oct 2012

Challenge the future

Outline

- Introduction
- Needs of miniaturized space systems
- Miniaturized space systems @ TU Delft
- Perspectives of miniaturization in space
- Conclusions

Introduction Miniaturization for Space

- Sensors
 - Star tracker
 - Sun sensor
 - Magnetometer
 - Micro Inertial Measurement Unit (MIMU)
- Actuators
 - Micro propulsion
 - Reaction wheel
 - Magnetorquer
- Communication devices
 - Optical
 - Radio frequency
- Others
 - Thermal control
 - Lab-on-Chip

Needs of Miniaturized Space Systems

 \odot Delft University of Technology 2012

4

Needs of Miniaturized Space Systems Overview of Missions

Mission name	Mission type	Developer	# of s/c	Mass [kg]	Miniaturized components	Launch year
MEMS Picosat	Demonstration	DARPA	2	0.4	MEMS RF switch	2000
THNS-1	Demonstration	Tsinghua University	1	25	MIMU, Miniature magnetometer, µ-propulsion	2004
ST-5	Demonstration	NASA	3	25	Thermal louvers, µ-thruster, Miniature magnetometer, Miniature spinning sun sensor	2006
MEPSI	Demonstration	DARPA	2	1.4 and 1.1	Miniaturized imager, MEMS gyros, µ-propulsion	2006
PRISMA	Demonstration	Swedish Space Corporation	2	150 (Mango), 40 (Tango)	μ -Pressure sensors and MEMS μ -propulsion	2010
NEOMEx	Demonstration	ESA	1	20	μ -propulsion, μ -sun sensor, modular μ -systems interface, etc.	2018
PAM	Science	NASA	1000	1	Carbon nanotubules structure, etc.	2020-2025
OLFAR	Science	Dutch institutes	50	10	Extensively using MEMS technology (μ-propulsion, MEMS star tracker, etc.)	TBD
APIES	Science	ESA	19	45	Arcjet thruster	TBD

Needs of Miniaturized Space Systems Needs for Miniaturization

Mission name	Mission type	Developer	# of s/c	Mass [kg]	Miniaturized components	Launch year
MEMS Picosat	Demonstration	DARPA	2	0.4	MEMS RF switch	2000
THNS-1	Demonstration	Tsinghua University	1	25	MIMU, Miniature magnetometer, µ-propulsion	2004
ST-5	Demonstration	NASA	3	25	Thermal louvers, µ-thruster, Miniature magnetometer, Miniature spinning sun sensor	2006
MEPSI	Demonstration	DARPA	2	1.4 and 1.1	Miniaturized imager, MEMS gyros, µ-propulsion	2006
PRISMA	Demonstration	Swedish Space Corporation	2	150 (Mango), 40 (Tango)	μ-Pressure sensors and MEMS μ-propulsion	2010
NEOMEx	Demonstration	ESA	1	20	μ -propulsion, μ -sun sensor, modular μ -systems interface, etc.	2018
PAM	Science	NASA	1000	1	Carbon nanotubules structure, etc.	2020-2025
OLFAR	Science	Dutch institutes	50	10	Extensively using MEMS technology (µ-propulsion, MEMS star tracker, etc.)	TBD
APIES	Science	ESA	19	45	Arcjet thruster	TBD

- Extensive validation, especially for radiation and thermal, before utilization
- Lost-cost and modular components for a large range of missions, especially by modifying terrestrial components for improved reliability and performance
- Primary need is high-precision, low-cost and modular AOCS components

 $\ensuremath{\textcircled{}^{\circ}}$ Delft University of Technology 2012

Miniaturized Space Systems in TU Delft

 \odot Delft University of Technology 2012

7

Miniaturized Space Systems @ TU Delft Dutch Activities

- The MicroNed Programme
- Objective
 - Establish a market-oriented, dynamic and sustainable public-private knowledge infrastructure on MEMS
- Organization
 - Cluster 1: Micro satellite (MISAT)
 - Cluster 2: Smart microchannel technology (SMACT)
 - Cluster 3: Microfactory (MUFAC)
 - Cluster 4: Fundamentals, modelling and design of microsystems (FUNMOD)
 - Auxiliary projects

 $\ensuremath{\mathbb{C}}$ Delft University of Technology 2012

Miniaturized Space Systems @ TU Delft **MISAT Research Cluster** MiSat

- Dutch national research cluster on space-based MST
- Objective
 - Advancement and dissemination of MST and fundamental knowledge for space-oriented science and technology
- Organization
 - Cluster leader: TUD Space Systems Engineering (SSE)
 - 4 work packages (bus, payload, architecture, distributed systems)
 - 24 projects
 - 25 partners
- Key achievements
 - Autonomous wireless sun sensor
 - Micro-propulsion
 - Delfi-C³

© UT/TNO/TUD

TWO YEARS IN ORBIT

Miniaturized Space Systems @ TU Delft

- First Dutch university satellite
- Developed by students in SSE
- Piggyback launch 28th April 2008

Key Specifications				
Dimensions	100x100x300 mm ³			
Mass	2.2 kg			
ADCS	Passive magnet control			
CDHS	Decentralized, each PCB controlled by microcontroller			
EPS	Decentralized, each PCB protected by microcontroller			
ΤΤС	Uplink UHF @ 435 MHz, 600 bps FSK; Downlink VHF @ 145 MHz, 1200 bps BPSK			
Thermal	Passive			
Payload	Autonomous wireless sun sensors, thin-film solar cells, transponder			

Miniaturized Space Systems @ TU Delft Autonomous Wireless Sun Sensor on Delfi-C³

General Specifications		
Sensor Type	Quadrant Sun Sensor	
Mass	80 g	
Dimensions	60x40x20 mm (lxwxh)	
Field of view	90° x90°	
Inaccuracy	~ 1°	
Data rate	1 Hz	

RF Specifications			
Frequency	915.0 MHz		
Modulation	Gaussian Frequency Shift Keying (GFSK)		
Bitrate	150 kbps (50 kbps effective due to encoding)		
Encoding	Manchester		
Protocol	Nordic Semiconductor ShockBurst (proprietary)		

Miniaturized Space Systems @ TU Delft Status of Delfi-C³

- Mission
 - So far more than 800 days of operations
 - ~ 300 participating radio amateurs
- Payload
 - Telemetry from all payload received
 - AWSS Z+ working, Z- little data, but still useful enou
 - More than 53,000 I-V curves of thin-film solar cells harvested
 - Radio amateur transponder decreased after some m
- Platform
 - All 4 solar panels and 8 Rx/Tx antennas deployed
 - All subsystems fully operational
 - Rotation rate decrease from 5.06 °/s after injection to 0 0.7 °/s
 - Some reliability issues on CDHS
 - Some data integrity issues on ground segment

Miniaturized Space Systems @ TU Delft Delfi-n3Xt

- Successor of Delfi-C3
- MST components demonstrated as payloads
- To be delivered for launch within one month!

Key Specifications				
Dimensions	100x100x300 mm ³			
Mass	3 kg			
ADCS	3-axis stabilized using reaction wheels			
CDHS	Decentralized, each PCB controlled by microcontroller			
EPS	Decentralized, each PCB protected by microcontroller			
ттс	Uplink UHF @ 435 MHz, 600 bps FSK; Downlink VHF @ 145 MHz, 1200 bps BPSK			
Thermal	Passive			
Payload	T ³ µPS, SDM, ISIS Transceiver			

Miniaturized Space Systems @ TU Delft ADCS Sensors on Delfi-n3Xt

Magnetometer					
Section	Parameter	Input			
	Brand / Model	Honeywell HMC5883L			
General	Communication Type	I ² C			
	Configuration	Triple-axis, orthogonal			
	Measurement Range	±100 μT			
Specification	Nominal Range In-orbit (scalar)	20 μT up to 47 μT			
	Measurement Resolution	65 nT			
Accuracy	Noise Type	white, Gaussian			
Accuracy	Noise Level (open field)	170 nT (1σ)			

TUDelft

		Sun Sensor	
	Section	Parameter	Input
II.		Brand / Model	TU Delft µSS-1
	Conoral	Architecture	Quadrant Photodiode
	General	Communication Type	I ² C
Online Jake		Configuration	1 on each satellite face (6 total)
The Alter	Specification	Field of View (FOV)	±60°
		Power Consumption	26 mW idle, 66 mW measuring
		Mass	10 g
		Max. Read-out Frequency	120 Hz
		Noise Type	white, Gaussian
	Accuracy	Noise Level	0.4º (1σ)
		Bias	< 3°, steady

Miniaturized Space Systems @ TU Delft ADCS Actuators on Delfi-n3Xt

Magnetorguer					
Section	Parameter	Input			
	Brand / Model	TU Delft µMTQ System			
Conorol	Communication Type	analogue			
General	Configuration	2 rods and 1 open coil			
	Current Driving	pulse-width modulation			
	Range	±0.06 A·m ²			
Specification	Resolution	-/off/+			
	Power Consumption	90 mW			

Reaction Wheel					
Section	Parameter	Input			
	Brand / Model	TU Delft RW System			
General	Communication Type	I ² C			
	Configuration	triple-axis, orthogonal			
	Range	±1.5·10 ⁻³ N·m·s			
Specification	Resolution	3.5·10 ⁻⁶ N·m·s			
	Power Consumption (1 RW, full speed)	400 mW			

Miniaturized Space Systems @ TU Delft Other Miniaturizations on Delfi-n3Xt

TUDelft

ADCS Subsystem		
Parameter	Input	
Mass	330 g	
Power	1600 mW (max)	
Volume	90X90X34.6 mm ³	
Data	1 Kbits, 2 Hz	

Section	Parameter	Input
Mierocontrollor	Brand / Model	TI MSP-430F1611
Microcontroller	Clock Speed	8 MHz
	Brand / Model	Maxim Dallas DS1318
Timekeeping	Range	13.6 years
	Resolution	0.1 s
General	Power Consumption (at DSSB)	151 mW

	Section	Parameter	Input
	General	Dimensions	90 mm x 90 mm x 27 mm
		Mass	140 g
		Power Consumption	0.063W (idle), 10.6 W (ignition)
		Data Interface	I ² C, 100 kbit/s
	Performance	Thrust Level	6.4·10 ⁻³ N (max)
		Specific Impulse (I _{sp})	69 s (average)
		Total Impulse	0.114 Ns

 $\ensuremath{\textcircled{}}$ Delft University of Technology 2012

Miniaturized Space Systems @ TU Delft Miniaturized Inter-satellite Sensor on DelFFi

• SPaceborne Active Ranging and Communicating System

- Uses FMCW (Frequency Modulated Continuous-Wave) technology for versatile applications
- Based on a TNO development for terrestrial safety applications
- To be further developed jointly by TNO and TUD/SSE for space application
- Highly miniaturized and low power for cubesats
- Separations from 1 m 1000 km with high accuracy (~cm) and high data rate (up to 1Mb/s)

Miniaturized Space Systems @ TU Delft Micro Resistojet Thruster on DelFFi

Silicon-based Micro-resistojet System				
Flow channel dimensions	Value	Limitations		
Length	1 cm	No		
Height	30-50 µm	No		
Width of channel walls	50 µm	Should not be less, in order to have good wafer bonding		

 $\ensuremath{\textcircled{}}$ Delft University of Technology 2012

Miniaturized Space Systems @ TU Delft Micro-Propulsion on DelFFi

- Larger & more CGGs
- MEMS resistojet
- m_{prop} = 40 g • I_{sp} = 150 s
- $\Delta V_{tot} = 20 \text{ m/s}$
- (from 1.2 g) (from 70 s) (from 0.3 m/s)
- Formation Acquisition
- Formation Flying (30 days 120 days)
- Controlled Re-entry (i.c.w. 30d FF)

Miniaturized Space Systems @ TU Delft Formation Flying Avionics on DelFFi

 $\ensuremath{\textcircled{}}$ Delft University of Technology 2012

Miniaturized Space Systems @ TU Delft Formation Flying Avionics on DelFFi - Experiment

Perspectives of Miniaturization in Space

 \odot Delft University of Technology 2012

23

Perspectives of Miniaturization in Space The Goal

Drivers of utilizing space MST

Mission

• Mass (?)

Cost

Powerful individual satellite

A cluster of SoMS satellites

Perspectives of Miniaturization in Space The Roadmap

- MST-based components
- Miniaturized payload
- System-on-Chip (SoC) sensors
- Multi-functional components and structure
- Low power electric micro propulsion

- Spacecraft architectuInfrastructure
 - System-of-MicroSystems. Testbeds for individual spacecraft
- Modularity

• Testbeds for distributed system

- Wireless
- Low-cost and mass prod
- Distributed systems
 Distributed onboard autonomy
 - Miniaturized inter-satellite link

TUDelft

Perspectives of Miniaturization in Space Approach of Miniaturization

$\ensuremath{\textcircled{}}$ Delft University of Technology 2012

Conclusions

- Exciting potential of miniaturization for micro- and nano-satellites
- System-of-MicroSystem spacecraft for distributed space architectures
- Significant progress achieved worldwide
- Step-wise strategy to develop System-of-MicroSystem spacecraft
- Cost is the driver, so utilize COTS components and develop miniaturization only when necessary

For further info, please contact: Dr. Jian Guo

j.guo@tudelft.nl

or check:

www.sse.lr.tudelft.nl

 \odot Delft University of Technology 2012

28