System Engineering Data Repository

- 09:00 Engineering data in the MBSE life-cycle
- 09:20 EGS-CC in the system context
- 09:40 Conceptual Modelling and ECSS
- 10:00 eCASCADE
- 10:20 A snapshot of systems engineering data management in the automotive industry
- 10:40 Coffee Break
- 11:00 Perspective on system database management at CNES
- 11:20 System Engineering Data Repository: Return of Experience and Recommendation for the future
- 11:40 Realizing the ideas of Space System Data Repository
- 12:00 Discussion Way Forward
- 13:00 Lunch

MBSE and Data | Joachim Fuchs | 24/10/2012 | TEC | Slide 1

Engineering Data in the MBSE context

Joachim Fuchs

24 October 2012 @: ADCSS 2012

www.esa.int

European Space Agency

System Engineering

- According to ECSS:
 - Requirements engineering
 - ✓ Analysis
 - Decomposing and allocating requirements during functional analysis
 - Assessing system effectiveness
 - Providing trade studies for assessing effectiveness, risk, cost and planning
 - Design and configuration
 - ✓ Verification, including qualification and acceptance
 - System engineering integration and control throughout all the project phases.

Classical SE Process

Relevant Domains at System Level

Project Context

Challenges

- ✓ Increased complexity
- Decreasing resources
- Increased use of existing designs and boxes
- Increased need for interoperability of systems (in particular for cooperative developments)
- ✓ Concurrent engineering by different stakeholders
- ✓ Stakeholder handover at milestones
- Interaction between the different domains
 - ✓ Model-based, cross discipline collaboration
- Institutional projects
 - ✓ Different level of responsibility
 - ✓ Shift of responsibility between stakeholder
 - ✓ Several levels of interaction
 - ✓ Technical vs. managerial boundaries

Areas for Improvement

- Improvements are possible in the following areas:
 - Requirements management and verification
 - ✓ Design trade-offs at system level
 - ✓ Analysis of system operability issues
 - ✓ Assessment of engineering margins
 - ✓ Coherence between Analysis and Testing
 - Preparation and execution of AIT
 - ✓ Transition from AIT to operations
 - ✓ Data sharing

Virtual Spacecraft Model

- A Virtual Model is the computer-based representation of (elements of) a system, its environment or the required test equipment
- Data represented should include
 - ✓ Requirements
 - Functionality and Behaviour
 - ✓ Appearance
 - Design Definition / Engineering Data
 - ✓ Analysis / test definitions and results
 - ✓ Links to Domain Specific tools and models
- Required enabling features
 - Consistent, comprehensive data management (incl. e.g. persistence, versioning, ...)
 - ✓ Multi-disciplinary, shared S/C model / representation

MBSE and Data | Joachim Fuchs | 24/10/2012 | TEC | Slide 8

End-to-end Model-Based SE Process

Mechanical Engineering

Analysis \rightarrow Design \rightarrow Design to Manufacturing

Electrical Engineering

Analysis \rightarrow Design \rightarrow Automated PCB Manufacturing

AOC Engineering

Analysis \rightarrow Design \rightarrow Autocoding

Flight S/W Engineering

Analysis \rightarrow Design \rightarrow Code Generation

Functional Simulator Engineering

Analysis \rightarrow Design \rightarrow Code Generation

Functional Verification Engineering

Analysis \rightarrow Test Design \rightarrow Procedure Generation

MBSE and Data | Joachim Fuchs | 24/10/2012 | TEC | Slide 10

Requirements Engineering

European Space Agency

System Verification

SE + MBE = MBSE

ESA UNCLASSIFIED - For Official Use

Resulting Data Challenge of SE

Data Management

System-wide coverage

MBSE and Data | Joachim Fuchs | 24/10/2012 | TEC | Slide 14

European Space Agency

Common Data Model

- Model-based System Engineering is relying on the fact that (SW) representations can address life-cycle issues before the actual production / manufacturing
- Formalisation of data and information allows to increase the consistency of that data across different dimensions (at any moment between stakeholders, and along the life-cycle)
- Modelling and the use of models relies extensively on the formal representation of data – depending on the use case all "connected" stakeholders need to agree
- Need to agree on the way data is specified, handled and ultimately exchanged

Thank you

Joachim.Fuchs@esa.int

European Space Agency