

Integrated Modular Avionics for Space

IMA4Space ADCSS 2012

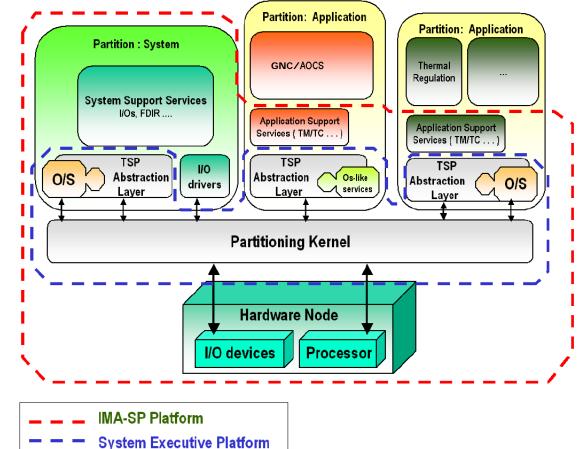
J.Windsor ESTEC 23-10-2012

European Space Agency

Agenda

- 1. Introduction
- 2. Architecture
- 3. Implementation Status of System Execution Platforms (SEPs)
- 4. Use Case: (Platform Software) Astrium
- 5. Use Case: (Platform & Payload) Thales/SCISYS
- 6. Use Case: (IO) GMV
- 7. Conclusion of the use cases

Introduction


- Kick Off (July 2010)
- Activity Phase 1 System Assessment
 - IMA-SP system definition, architectural design and component specification (software system engineering)
 - SEP products design specification
 - Findings consolidated through industrial review
- Activity Phase 2 Preparation of the Software Building Blocks
 - Development and pre-qualification of SEP's
 - Prototyping of I/O handling software and demonstration with representative hardware (RASTA systems, 1553 and SpaceWire links)
- Activity Phase 3 Implementation
 - Platform software use case
 - Payload software use case
 - I/O use case
- Final Presentation (5th/6th December 2012)
- All documents shall be publically available

IMA-SP Architecture

- Hardware node(s) → LEON2/3 + IO devices
- System Executive Platform (SEP)
 - Partitioning kernel executes independent partitions with static cycle
 - TSP Abstraction Layer (derived from ARINC 653 APEX)
 - RTEMS Guest OS executes
 processes within partition
- System support services
 - system middleware
 e.g. I/O handling, FDIR,
 OBSM
- Application support services
 - application middleware
 e.g. TM/TC interface, access
 to on-board parameters

Implementation status of System Execution Platforms (SEPs)

- XtratuM (XM) SEP
 - LEON2 MMU and LEON3 MMU
 - Compliant to SSS & TSP Services API document
 - XM and RTEMs modification for performances and mapping requirements from experimentation
 - Test suite for TSPAL/XtratuM (LEON3 and LEON2)
 - Test suite for TSPAL-RTEMS/XtratuM (LEON3 and LEON2)
- Pike OS SEP
 - rtems-tsal and ReleaseNotes compliant SSS & TSP Services API document
 - Pike OS SEP on LEON2 MMU and LEON3 MMU
 - SEP RTEMS personality Validation Suite
- AIR SEP
 - Fixing the interrupt virtualisation race conditions
 - Leon 2 implementation
 - Partition restart implementation
 - Completing the remaining tests and documentation

IMA-SP Stakeholders

Use Cases A + B

Actor:	System Architect	System Integrator (early phases)	IMA-SP Platform Supplier	Application Suppliers	System Integrator (later phases)
is provided with	- Customer needs	 High level requirements General architecture design Standards 	 - IMA-SP Platform requirements - Configuration of the IMA-SP Platform - Standards 	 Application requirements Resource allocation Toolset and IMA-SP Platform simulator Pre-qualified configured IMA-SP Platform Standards 	 Pre-qualified configured IMA-SP Platform Pre-qualified applications
has to provide 	 High level requirements Standards General architecture design 	 Verified requirements IMA-SP Platform requirements Configuration of the IMA-SP Platform 	 Pre-qualified configured IMA- SP Platform SEP supplier & guest RTOS System / Application Support Services Toolset and IMA-SP Platform §imulator 	 Pre-qualified applications Partition Emulator for qualification of dependent applications 	 IMA-SP Platform requirements Configuration of the IMA-SP Platform Resource allocation for the applications Application requirements Integrated qualified system European Space Agency

ESA UNCLASSIFIED – For Official Use

IMA SP : Use Case A Platform Software

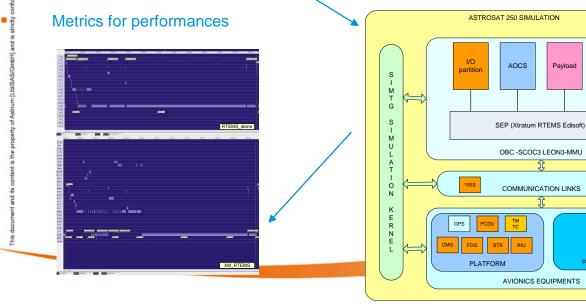
All the space you need

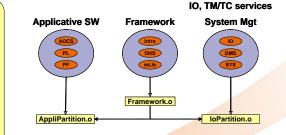
23 10 2012

Use case A : Architecture

- IMU equipment management : TM/TC management and 1553 exchange in an open loop configuration.
- AOCS functional AOCS behaviour in close loop (MAN and CAP algorithm).

First step AS250 Partitioning in two partitions on XtratuM SEP

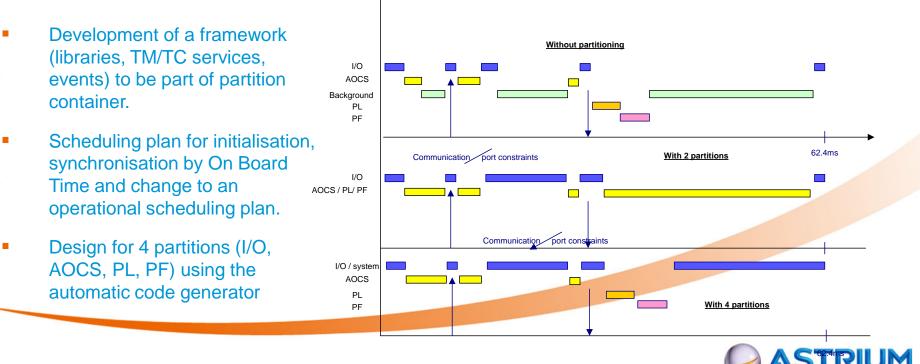

- One I/O partition for DHS, I/O and system
- One partition for AOCS, platform and payload
- Second step AS250 Partitioning in four partitions on XtratuM SEP
 - I/O partition for DHS, I/O and system
 - AOCS,
 - platform
 - payload


Payload

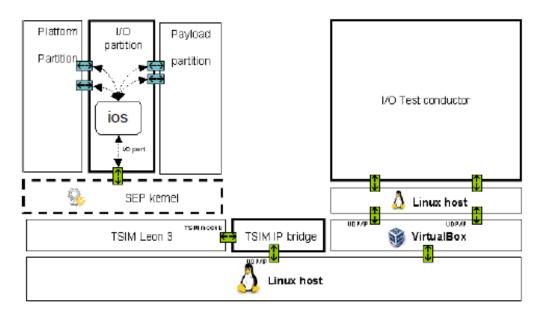
Platform

SPW

PAYLOAD



All the space you need


Use case A : Status

- Redesign and configuration (communication, interrupt, space partitioning)
- End to End flow model for computation time characterization and management of virtualised interrupt
- Development of automatic code generator to redesign automatically the interface between partitions using ARINC 653 communications ports from messages data base
- I/O management by communication port with operational constraints (device exchange through 1553 buses)
- Management of TM/TC : software buses encapsulated in communication port

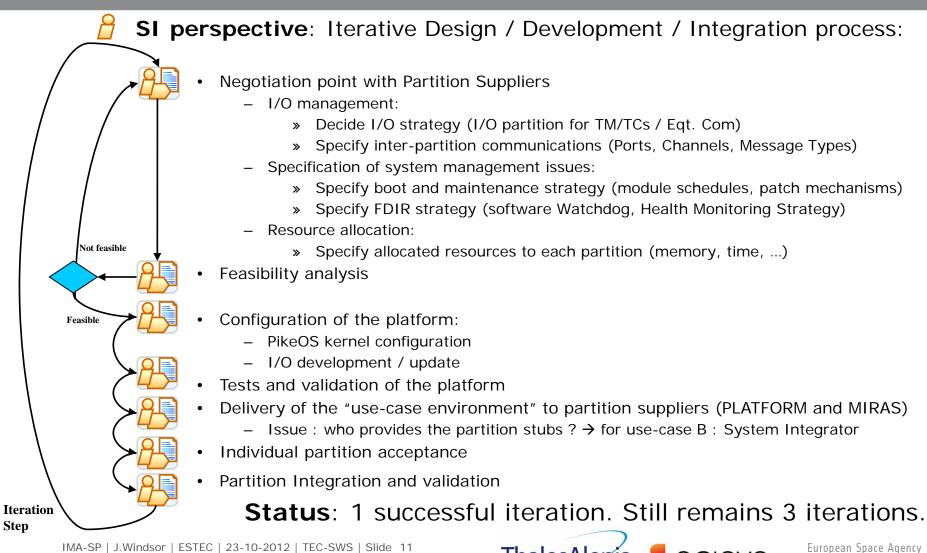
All the space you need

Platform & Payload

USE CASE B

IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 10

ESA UNCLASSIFIED - For Official Use



European Space Agency

Use-Case B : TAS and SCISYS

System Integrator perspective (TAS)

ThalesAlenía 🧲 SCISYS

IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 11

Use-Case B : TAS and SCISYS

Partition Supplier perspective (TAS)

– Early Results: scheduling and TM / TCs are validated.

IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 12

Use-Case B : TAS and SCISYS

Partition Supplier perspective (SCISYS)

Iteration Step

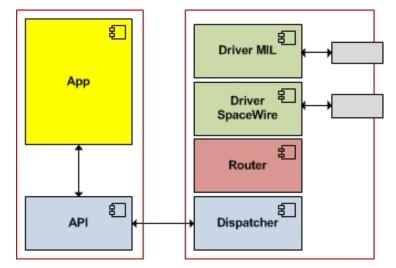
- Negotiation point with System Integrator
 - Scheduling: MIRAS needs to be modified to fit with the MAF
 - Impact: replacement of the LLSW and removal of some functionality from MIRAS, e.g Memory Scrubbing
- Partition Development
 - Low Level Software (LLSW) Port:
 - » Removal of all software which interacts/controls the hardware
 - » Replaced with IPC channels which communicate with the SVF via the IO partition
 - MIRAS Port:
 - » Architecture design changes : Direct communication with the hardware replaced by:
 - » request data from the SVF in one execution window and receive it in a subsequent execution window.
 - » Removal of unnecessary code e.g. Memory scrubber
- Test and Validation of the Partition
- Delivery of the Partition Binary Image and SVF to System Integrator
- Status:
 - LLSW IPC port & MIRAS TM/TC Manager completed
 - SVF tool framework complete, development on-going with the porting of MIRAS
 - Early Results: data successfully between SVF and the MIRAS partition

IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 13

European Space Agency

Generic I/O Component

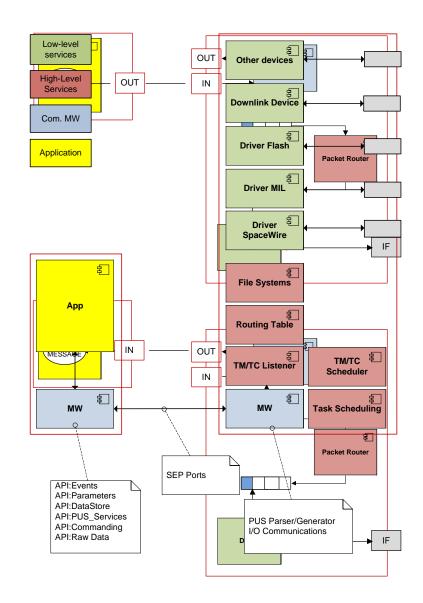
USE CASE C


IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 14

European Space Agency

ESA UNCLASSIFIED – For Official Use

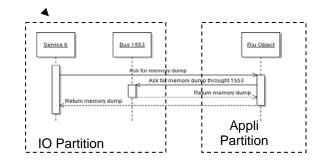
GENERIC I/O COMPONENT

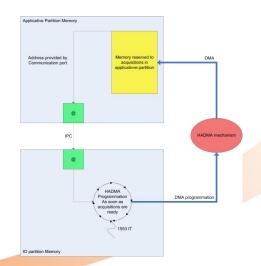

- Interacts with other applications through ARINC 653 Ports...
- ... or shared memory
- Allows for higher level abstraction of hardware devices and data buses, through specific Middleware
- Interruptless, it is based on polling and, hence, deterministic
- Provides drivers for:
 - MIL-STD-1553B (Cores: GR1553B and B1553BRM)
 - SpaceWire (GRSPW2)
 - Ethernet (GRETH) with UDP/IP stack
 - UART (APBUART)

I/O COMPONENT INTERFACES

- Current API (Middleware)
 - io_init
 - send_read_request
 - get_reply
 - send_data
- Remote ports
 - Subscribe option
- Shared memory

Use Case Feedback


IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 17


European Space Agency

ESA UNCLASSIFIED – For Official Use

Use case A : design contraints and solution

- Operational application with interrupt synchronisation
 - Solution : scheduling plan adapted to the interrupt synchronisation
 - Operational application with object design
 - Solution for the use case : multiplication of communication port
- Operational software with enable/disable interrupt
 - Solution for the use case : Xtratum services
- On Board Time interrupt multiplexed
 - Solution for the use case : wait on the first one, no timers drift on the NSVF
 - Solution for the future : dedicated line or interrupt handler in BSP
- Operational application with complex data structure (1ko of industrial data / MIF => 200ko of structured data /MAF to be transferred from I/O partition to application partition in 3ms in order not to redesign completely the software)
 - Solution for the use case : shared memory or DMA mechanism (already designed to be tested)
- The snooping on the leon3 cache does not work with MMU
 - Solution for the future : memory sectors used with DMA should be set uncacheable

All the space you need

Date - 18

Use Case B Feedback (1/2)

- Porting an existing application to a partitioned system is not a straight forward process
 - In depth knowledge of the application/design/software is required
 - Architecture/implementation changes are required
- Role / responsibilities definition and contract / licenses issues are important
 - System integrator relies on Partition Suppliers who rely on Platform Supplier who relies on SEP supplier and HW/Simulator suppliers
 - who is responsible if there is a problem ?
- I/O management changes from traditional practices
 - Generally cannot directly read from hardware →communication buses are shared resources managed by an I/O partition
 - New I/O management introduces latency
 - IPC communication is limited and not efficient when big amount of data is exchanged
 - Need to use other mechanisms (DMA or shared memory)
 - Trade-off for I/O mechanisms is not straight forward

Use Case B Feedback (2/2)

- Scheduling of application activities is more complex
 - Take into account other partitions' needs implies to change frame execution time, and/or MAF → impact on traditional practises
 - Schedule of the system drives the schedule of the application
 - If a task needs to execute at a certain frequency this must be accounted for in the system & application schedules
 - Task scheduling has to be synchronised with partition scheduling
 - ensure all critical tasks are completed before context switch
- Using an SEP is not an easy job
 - Need a strong support all along the project !
 - Tool support
- Compatibility of all actors' SVF is an important topic
- Concurrent availability of several test benches / hardware representative environments is required to achieve parallel qualification of partitions

System Executive Platform Feedback

- XtratuM SEP for use case A
 - Pro : product maintenance & adaptability good level of maturity – OBT synchronisation
 - Cons : Missing GDB debug tool bootloader
- Pike OS SEP for use case B
 - Pro : Extensive documentation Development tools very good
 Easily configurable Debug available on TSIM
 - Cons : No tracing mechanism Missing GDB debug tool RTEMS interrupt management not implemented
- Edisoft RTEMS para-virtualised for all SEP kernels

Conclusion

- Existing flight software has been re-factored into partitions with partial re-validation on SVF platform
 - Astrium Astrosat AS250
 - TAS-F Sentinel 3 Central Software
 - SCISYS MIRAS payload application
- AIR, PikeOS and XtratuM have been ported to LEON2/3 and pre-validated
 - PikeOS offers DO-178 certification datapack
- Lessons learnt from Use Cases
 - Mastering role definition and process is key to success
 - IO management with current HW is challenging but not impossible
 - Execution Platform support tools & test bench needed
 - HW improvements have been identified

IMA-SP | J.Windsor | ESTEC | 23-10-2012 | TEC-SWS | Slide 22

Please join us for the IMA-SP Final Presentation

5th / 6th December 2012 at ESTEC