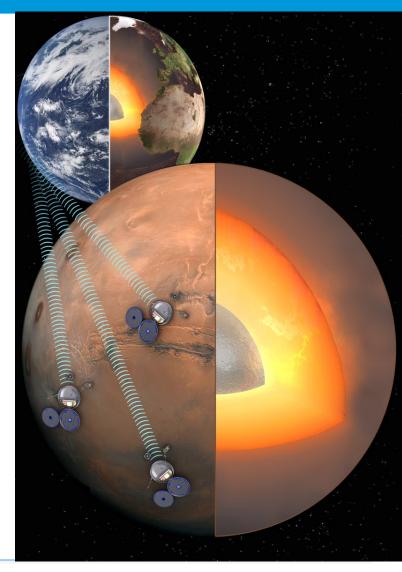


Miniaturisation needs of the Mars Network Landers


INSPIRE mission

Kelly Geelen Study Manager

ESA Workshop on Avionics Data, Control and Software Systems (ADCSS)

23-25 October 2012, ESA/ESTEC, Noordwijk, The Netherlands

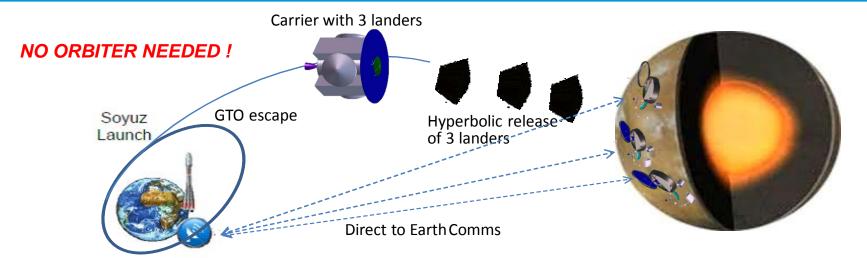
ESA Science and Robotic Exploration

Outline

Background

- Mission Overview
- Need for Miniaturisation
- Current activities in MREP
- Potential future development
- Conclusions

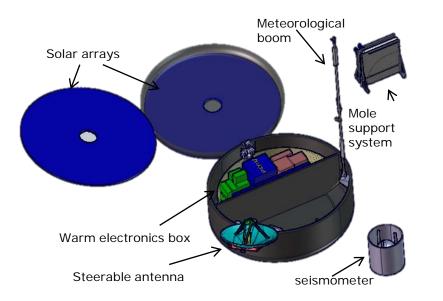
Background

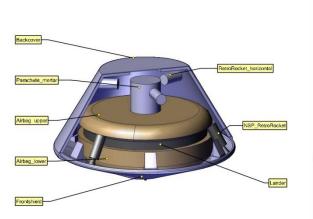

Mars Network Science mission proposed within the MREP program

Mars Robotic Exploration Programme (MREP/MREP-2):

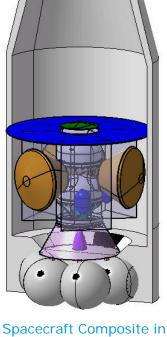
- Mars Sample Return mission is taken as long term objective
- Target is to contribute to each Mars mission slot (every ~2 years)
- Prepare post-ExoMars missions and enable decisions at next C-Min (2012)
- **Mission Studies**: 2 candidate missions for Launch from 2022 onwards for MREP-2
 - Phobos Sample Return Mission PHOOTPRINT
 - Mars Network Science Mission INSPIRE
- Technology Development
 - Short term & Mid Term: For 2022 or 2024 proposed missions
 - MSR critical Technologies
 - Long term: strategic and enabling technologies for European Robotic Exploration

Mission Overview: INSPIRE




- **Soyuz Fregat** launch from Kourou into GTO (3180 kg spacecraft composite incl adapter).
- ◆ 7-12 months transfer with carrier spacecraft providing 1.4-1.7 km/s delta-v.
- Carrier releases in sequence 3 network landers up to 12 days before Mars arrival.
- Carrier break up and burn up in the Martian atmosphere (Planetary Protection compliant).
- Each lander performs ballistic entry, descent and airbag landing.
- Surface platform of ~120 kg deployed on the Martian surface with Direct to Earth comms.
- Deployment of instrumentation, some using **a robotic arm**.
- Long duration operations (goal >1 full Martian year) on the Martian surface to investigate the interior of the planet.

ESA Science and Robotic Exploration


The mission elements

- Most avionics located in Warm Electronics Box protected with several cm of insulation
- Lander avionics used for entry, descent and landing as well as surface operations
- The probe has an instrumentation/payload mass of 5% or the entry mass.

pacecraft Composite in Soyuz

The need for miniaturisation (1/2)

Accommodating 3 Mars landers on a Soyuz launch requires avionics with <u>low mass</u>

- Large direct snowball effect on mass
 - 1 kg on surface per lander
 - \rightarrow additional 1.5 kg needed for safe landing (2.5 kg penalty per probe)
 - \rightarrow x 3 probes (7.5 kg penalty)
 - \rightarrow + increase in carrier structure and propellant for GTO transfer of factor 2
 - →1 kg saved per lander (3 kg landed mass) reduces launch mass by 15 kg!
- Remember: Per lander the payload mass fraction is only 5%, so every kg of avionics could be replaced by payload once launch mass margin is met
- Volume & power have additional indirect impact on launch mass

The need for miniaturisation (2/2)

Accommodating 3 Mars landers on a Soyuz launch requires avionics with <u>low volume and power</u>

- ♦ Volume
 - Direct impact: driver to limit lander size to fit within launch fairing
 - Indirect: Avionics volume increase → increase in surface platform size
 → increase in aeroshell size → large mass penalty
 - Indirect: Avionics volume increase → increase in warm electronics box volume → increase in thermal power requirement → increase in power system volume and mass
- ♦ Power
 - Avionics power reduction, translates to smaller and lighter power system
 → launch mass impact

 For long duration surface missions, there is also a benefit to have low power /hibernation modes and low temperature survivability

Current Developments in MREP

The MREP Technology development plan :

- Can be found on: <u>http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=47729</u>
- Reviewed as a minimum once a year according to mission needs

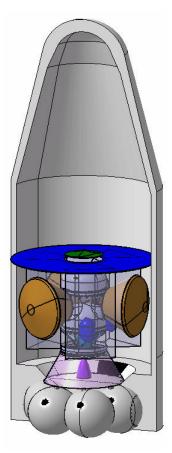
Current activities for miniaturised or compact avionics:

- Compact dual UHF/X band Communication Package study
- ♦ Tailored OBC EM for planetary landers
- Developments needed in coming years
 - Miniaturised PCDU for Mars landers/rovers
 - Miniaturised Dual UHF X band EM development
 - Miniaturised gyros and accelerometers (IMU), altimeter

- Exploration missions in general have large mass snowball effects and tight volume constraints, due to the large amount of propellant required and entry, descent and landing system for planetary landers
- Miniaturising avionics is essential!
 - Can enable missions (meet launch margins)
 And/or
 - Increase science return by increasing the payload mass.
- Miniaturised avionics identified as enabling building blocks within MREP-2 Technology Development Plan

Questions ?

➔ INSPIRE A Mars Network Science Mission


Carrier Spacecraft

• "Smart" carrier design totally independent from the landers:

- No subsystems shared with the landers
- Launch mass: dry 516 kg, wet 1915 kg

Configuration	 Standard interface of 937 mm diameter Central cylinder accommodating tanks Circular top panel to accommodate solar cells 1m HGA integrated in top panel 3 landers spaced by 120 degrees on side panels 	
Propulsion	 Bipropellant (Isp =322 s), 400 N main engine Maximum 1400 kg of propellant in 2 large tanks 	
Thermal	Standard passive thermal control design	
Power	 Total area of 10.2 m² for the fixed solar panel MPPT in an unregulated bus Rechargeable Li-Ion battery 	
Communications	 X-band communications to ESA DSN 1m fixed HGA 65 W RF power 8 kbps downlink @2.6 AU 	
AOCS	 3-axis stabilised 12 x 10N RCS thrusters 2 star trackers, 2 IMU and sun sensors 	
Mechanisms	• 3 spin up and eject mechanisms for the landers	

Spacecraft Composite in Soyuz

Surface Platform

		Backcover
Configuration	 1.15 m diameter clamshell lander 	DOLACIVEL
	Solar panel deployed from lander lid	RetroRocket horizontal
Landing Site	Latitude: -15 to +20 degrees	Parachule_montar
	Altitude: < 0 km MOLA	
	 Accuracy: ~100 km 	
Lifetime	Goal >1 Martian year	Airbeg upper
Data Handling	Based on "Tailored On-Board Computer for planetary	
	landers" MREP development	Airbag_lower
	 ~5 Gbits of mass memory to store data during solar 	
	conjunctions	Lander
Thermal	• Warm electronics box (WEB) with aerogel insulation	Frontshield
	up to 10 cm	
	 Potential use of RHU to enhance mission lifetime 	Meteorological
	 Loop heat pipe connecting WEB to radiators 	boom
Power	 Solar array of ~2 m² sized for 550 Wh/sol at optical 	Solar arrays
	depth of 2	
	6.2 kg Li-ion battery sized to deliver 550 Wh with 60%	
	DoD	support
	Dust removal system to extend lifetime	System
Communications	MREP development of dual UHF-X band transponder	
	• X-band direct to Earth link, 40 cm steerable antenna,	A A A
	>1.4 kbps @2.6AU	
	 Data relay capability compatible with any existing 	
	orbiter using proximity-1 protocol	Warm electronics box
Mechanisms	Self-rightning hinge	Steerable antenna
	Robotic arm for instrument deployment	steerable antenna seismometer

Entry, Descent and Landing

Coast Phase:

From Carrier separation to entry

Entry:

♦ (1) Entry into Martian Atmosphere detected

Descent:

- ♦ (2) DGB Parachute opens at Mach 1.8
- ♦ (3) Front Shield is jettisoned
- (4) Lander with its Airbags system is lowered along a bridle from the Back Cover
- ♦ (5) Airbags are inflated
- (6) At predefined altitude, the retrorockets are ignited.
- (7) Bridle is cut ; the Back Cover is propelled away from the Lander;

Landing:

- \diamond (8) Lander free fall to the surface
- (9) Lander protected by its airbags bounces several times
- ♦ (10) Lander stops and comes to rest
- ♦ Airbags system is separated from the lander;

Clamshell lander is opened and surface operations begin

ESA Science and Robotic Exploration

