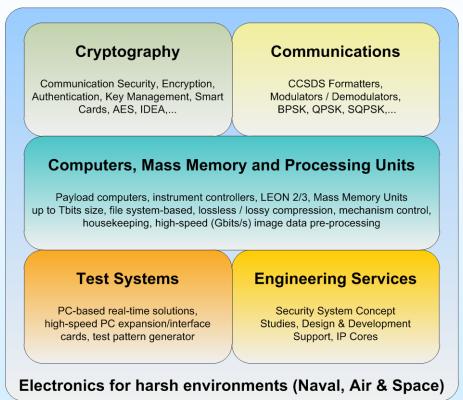


ESTEC/ITT AO/1-6491/10/NL/AT

Cryptographic Processor (CP) for the control of Telecom Processing Payloads (CPTPP)


DSI GmbH

Otto-Lilienthal-Str. 1 • D-28199 Bremen • Germany

Phone +49 421 59696-950 Fax +49 421 59696-959 http://www.dsi-it.de

DSI (Digital Signal Processing and Information Technology GmbH) is a SME located in Bremen, Germany which provides high speed electronic units for:

DSI has been developing airborne and space-based designs since 1997 and currently employs around 45 engineers for electronics, software, project management and product assurance.

DSI Informationstechnik

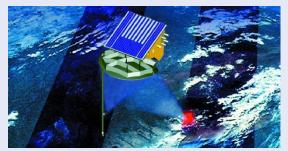
DSI electronic components are part of the major European airborne and space programmes

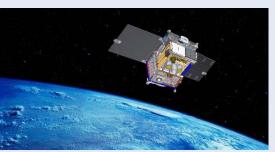
KompSat 2

Space & ground downlink data formatting and crypto system

ESGA

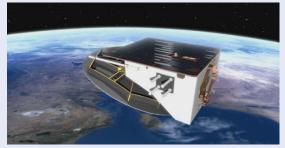
Gound crypto components


TET


Payload Control Computer and I/O Card

Galileo

Ground crypto test unit

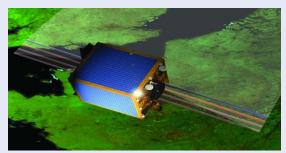


SAR-Lupe 1+2

Space & ground downlink data formatting and crypto system

Condor 2

Airborne & ground crypto system


SatComBW II

Ground crypto test unit

Proba V

Payload Control Unit incl. compression and downlink formatter

DSI DSI electronic components are part of the major Informationstechnik European airborne and space programmes

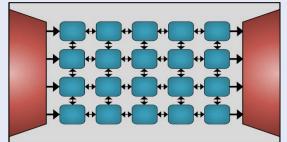
ExoMars

Payload Data Handling Unit incl. Mass Memory design

Euro Hawk


Airborne & ground crypto system

QI2S


Space multicore processor demonstrator system

JAXA Hayabusa-II MASCOT

On Board Computer

EnMap

Mass Memory incl. com-pression and downlink for-matter, Payload Controller

GökTürk


Space & ground downlink data formatting and crypto system

ICARUS LEO

Standard Platform Computer & I/O board

SAT-AIS

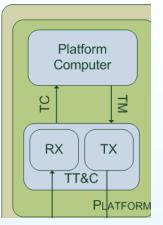
Data protection concept

Part 1: Background, Concept, Design

- Project Overview Main Objectives and Requirements
- System Characterisation Reference Architecture, Use Cases
- Threat/Security Risk Analysis Threats, Vulnerabilities, Risks
- Risk Countermeasures & Security Mechanisms
- CP Design and Communications Protocol Integration
- Security Assurance

Part 2: Implementation

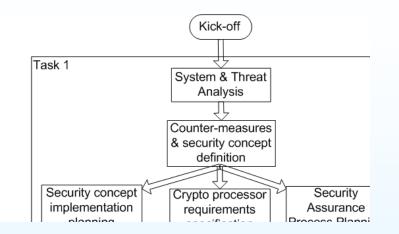
- CP Architecture
- CP Hardware
- CP EGSE/Tester


- Telecom satellite payload control and configuration (PCC)
- The PCC space link is used for configuring and monitoring radioand higher-layer data communications resource managementrelated parameters, software-defined radio etc.
- The PCC link is similar in nature to the traditional TM/TC links, although its criticality is somewhat lower
- The industry expects usage of dynamically reconfigurable payloads and hence PCC links in future fixed and mobile broadband satellite service missions

Payload Use Case Class	Example Use Cases	Corresponding assumed PCC link use case examples
No./Type		case examples
1. General public communications/ entertainment	Voice, television	Dynamic (re)allocation of logical voice channels and capacity as calls begin and end
2. Commercial/	Collecting	Unlikely to be dynamically tuned due to low
scientific asset/sensor monitoring	meteorological, environmental, unmanned installation monitoring data from remote locations	communication resource requirements, but PCC link could be used for monitoring data flow i.e. logical channel usage
3. Real-time commercial data communication	Financial and production data uplink	Tuning individual data flow scheduling parameters
4. Emergency communications	Destroyed communications infrastructure replacement for rescue services	Freeing up capacity and allocating the freed capacity to the emergency communication channels as the situation develops. Tuning quality-of-service-affecting parameters, to bound e.g. communication delay.
5. Military scenario	Conflict surveillance, sortie organisation	Virtual circuit set-up and tear-down, dynamic flow or packet scheduling parameter tuning, protocol mode switching, fast capacity reservation adjustments

System Reference Architecture

- To analyse the threats (and hence security risks) to the PCC space link in order to define:
 - Requirements for security of the link
 - A system security concept for its protection
- Note that only the space link is in scope and physical layer is out of scope (e.g. jamming threats not considered here, but in another ESA study)
- To define how to integrate the security solution with CCSDS data link communication protocols and to develop a requirements specification for a space-borne cryptographic processor (CP) supporting the protection of the PCC link



- To design and manufacture a breadboard model of the CP
- To design and manufacture the test equipment for the validation & verification (V&V) of the CP
- To perform the V&V of the CP
- To define a process for security assurance (SA) of the development of a commercial product version of the CP

- CP for geostationary satellites
- TC and TM data rate: 200kbps max.
- CCSDS space data link protocols used for TC and TM
- Security services:
 - o Data origin authentication
 - o Data integrity
 - o Data confidentiality
 - Access control for sending TCs
 - Flexible cryptographic key management
- TC/TM interfaces: RS-422
- Technology for demonstrator: reprogrammable FPGA

Threat Source	Motivation / Goal / Cause	Cap- ability	Threat Actions	Threat Source	Motivation / Goal / Cause	Cap- ability	Threat Actions
Foreign	Obtaining information		Denial-of-service	Rival	Gaining insight into	Medium-	Data viewing
(compared to payload user)	on communication patterns before		Eavesdropping – data viewing & traffic analysis	satellite/teleco m companies	payload usage, traffic patterns etc.	High	Command manipulation
government (war time)	imminent attacks		Command manipulation		in the hope of using the information for		Replay attack
	Disrupting communications		TM manipulation		gaining a		
	Manipulating payload		Command Replay		competitive		
	monitoring		TM replay		edge/financial advantage.		
Foreign government agency (peace time)	Obtaining information on governmental or commercial data traffic patterns	l High	Eavesdropping – data viewing & traffic analysis		Lower chance of active attack to disrupt a rival's operations		
				Hacker	Curiosity	Medium	Denial-of-service
Terrorists	Disruption and/or	Medium-	Denial-of-service		Challenge/Ego		Command manipulation
	manipulation of commercial or public	high	Command manipulation		Rebellion		'
	service, even emergency response		TM manipulation	Prankster	Curiosity	Low	Denial-of-service
	services				Challenge/Ego		Command manipulation
Criminal	Gaining insight into	Medium	Data viewing	Cryptographic	Inadequate	N/A	Poor management of
Organisation	commercial operational traffic patterns for planning other attacks on e.g. payload data		Command manipulation	administrator / officer (unintentional)	cryptographic knowledge or experience		keys leads to usage of weak sets of keys, aiding some of the above-listed threat actions

- Unencrypted configuration or monitoring information -> Eavesdropping -> Learn communication patterns for which the satellite is used (impact in critical scenarios is high)
- Unauthenticated TCs -> Data manipulation & forgery -> loss of control of communications -> may be extremely detrimental depending on communications scenario
- Unauthenticated TM -> Data manipulation & forgery -> loss of TM integrity -> confusion & undesired TCs sent in response
- Unauthenticated sequence numbers -> Data replay -> manipulated control/monitoring of communications resources
- Improper use of cryptographic algorithms (infrequent key change, keys too short, keys not "random enough", MAC too short etc.) -> weakening of applied cryptographic measures

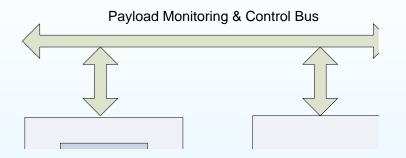
- Risk levels are derived from estimated worst case impact/consequence of a successful vulnerability exploitation and its estimated order-of-magnitude likelihood
- Likelihood depends on motivation & capability of threat source and inherent difficulty in exploiting a vulnerability (depends on environment, inherent baseline security etc.)
- Identified risks are typically low-to-medium level, since the PCC link data is less critical than both the satellite TM/TC link and the payload data link
 - Having said this, we cannot rule out usage of telecom satellite capacity for high-criticality scenarios, even military, and hence impact of manipulation or divulgence of communication resource management information may have a high impact if enough context information is available for an attacker to draw conclusions

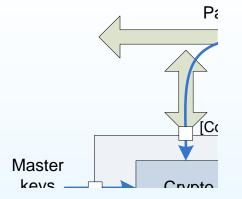
Security Goal	FWD Link Services	RTN Link Services	Key Management Services
Confidentiality	Selective field confidentiality or connectionless confidentiality	Selective field confidentiality or connectionless confidentiality	Connectionless confidentiality
Integrity	Connection integrity	Connection integrity	Connection integrity
Authenticity	Data origin authentication	Data origin authentication	Data origin authentication
	Peer entity authentication		Peer entity authentication
Availability	Access control	N/A	Access control

Services	Mechanisms
Selective field / connectionless confidentiality	Encryption
Connection integrity	For data integrity: Data integrity check (MAC); Digital signature; Encryption;
	For flow integrity: Sequence numbers; time- stamping, nonces
Data origin authentication	Data integrity check (MAC); Digital signature; Encryption
Peer entity authentication	Digital signature; Encryption; Authentication message exchange / hand-shaking
Access control	Passwords / presentation of credentials; Digital signature

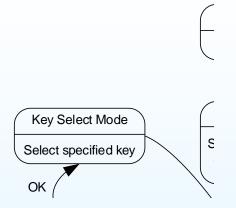
Security Mechanism	Countermeasure Type	Candidate Schemes (selected: in bold)
Encryption	Symmetric encryption	AES-CBC; AES-CFB ; AES-CTR; AES- GCM; AES-OFB
Message authentication code	Hash-based MACs, Encryption-based MACs	HMAC-RIPEMD-160; HMAC-SHA-2; GMAC; CMAC
Digital signature	Elliptic Curve (EC), non- EC algorithms	EC-GDSA, DSA, EC-DSA, RSA
Connection integrity	Sequence number, time- stamping, nonces	Specific application-level sequence number; communication protocol frame sequence number , global clock- based time-stamp, randomly-generated nonce
Authentication message exchange/handshaking	Message exchange protocol + digital	Diffie-Hellman-based message exchange with EC-GDSA (or other digital signature,
exchange/handshaking	signature	based on what is selected for the above)

CP-Supported Security Services


Security Function	Supported Services	Service ID	Input	Output
AES-256 decryption in	Forward link TC selective- field confidentiality	1	CCSDS TC transfer frame with encrypted payload	Decrypted CCSDS TC transfer frame
cipher-feedback mode, AES-CFB-8	Forward link CP TC selective-field confidentiality	2	Encrypted CP command	Decrypted CP command
	CP traffic key-unwrapping (key confidentiality)	3	Encrypted CP traffic key frame	Decrypted CP traffic key frame
AES-CFB-8 encryption	Return link TM selective- field confidentiality	4	CCSDS TM transfer frame	CCSDS TM transfer frame with encrypted payload
	Return link CP TM selective-field confidentiality	5	CP TM	CP TM with MAC
AES-CMAC verification with anti-replay counter	Forward link TC data and connection integrity	6	CCSDS TC transfer frame with MAC	Authenticated CCSDS TC transfer frame without MAC (or rejection of TC transfer frame)
AES-CMAC calculation with anti-replay counter	Return link TM data and connection integrity	7	CCSDS TM transfer frame	CCSDS TM transfer frame with MAC and ARC
AES-CMAC verification	Forward link CP TC data integrity	8	CP command with MAC	Authenticated CP command without MAC or rejection of CP command
	CP traffic key authentication (key integrity and authenticity)	9	Encrypted and MAC-tagged CP traffic key frame	Encrypted CP traffic key frame (or rejected key frame)
AES-CMAC calculation	Return link CP TM data integrity	10	CP TM	Authenticated CP TM with MAC


CP Commanding & Monitoring Approaches

In-band


Out-of-band

- Common approach, symmetric key infrastructure chosen (after trade-off with public key infrastructure approach)
- Master encryption/authentication keys pre-loaded onto satellite
- Data keys can be uploaded in sets and later activated

- The layered encryption/authentication scheme allows the cryptographic separation of logical channels and hence user privileges
 - o i.e. Key manager, CP operator, day-to-day operator

Key ID	Pld. TC Enc. Key	Pld. TC Enc. IV	Pld. TC Auth. Key	Pld. TM Enc. Key	Pld. TM Enc. IV
-----------	------------------------	--------------------------	-------------------------	------------------------	--------------------------

Role	Level of Trust	Available Security Services	Usable CP Interfaces
•	Knowledge of TC/TM encrypt authentication keys	ion and 1, 4, 6, 7	TC_in, TC_out, TM_in, TM_out

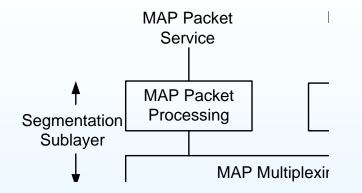
CP Operator / Knowledge of CP TC/TM encryption All except 3 and 9 All except internal master key Security Officer and authentication keys PROM interface

Key	Knowledge of master keys for key All	All
Management	encryption and authentication	
Officer		

The lower the encryption layer the more headers and fields are protected,

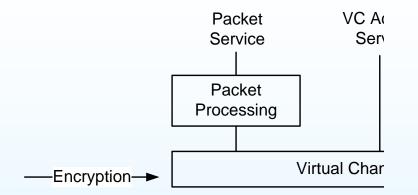
but:

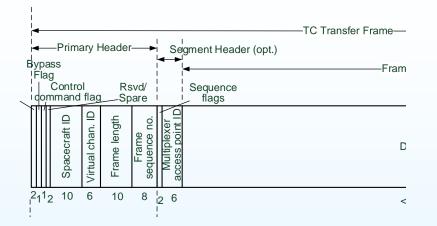
- More difficult to differentiate security (e.g. different keys) between services on the link
- Counter-productive to encrypt EDAC code blocks or information (so the layer should not be TOO low)
- Hardware vs. software e.g. lower layer implementation may force hardware cryptographic processing (also for performance reasons)


DSI Protocol Layer Choice Considerations for Authentication

Integrity is often more critical than confidentiality for unclassified missions -> thus authentication should cover as many fields as possible i.e. be at as low a layer as possible to avoid control information manipulation,

but:


- MAC schemes are sensitive to single-bit errors so it is useless to place MAC below coding layer
- MAC needs space in e.g. secondary header or user payload space
- Overall, the integration approach (devised independently) is similar to CCSDS draft standard Space Data Link Security Protocol (SDLSP)

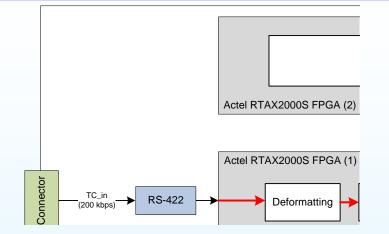

Data field size slightly restricted to make room for security information

Secondary header field used for security information

- Analogous to product assurance, runs in parallel to product development
- Based on standard security requirements
 - Selected standard was FIPS-140-2 requirements for cryptographic modules
- FIPS-140-2:
 - Aimed at modules protecting sensitive but unclassified data
 -> fits the CPTPP scenarios
 - Specifies functional, configuration, documentation, design and verification requirements
- Security level 2 selected as suitable for CPTPP
 - Higher levels require operator identity-based access control and active tamper protection -> not necessary for space unit
- FIPS-140-2 requirements adapted into CPTPP requirements

- When developing a product to be mass-produced and sold to e.g. Government agencies with standard-based security requirements, FIPS-140-2 certification can be sought
- For less formal security assurance, cheaper self-assurance can be pursued
- SA includes checking project outputs to ensure security functional, documentation and verification requirements are upheld, based on the selected security standard
- Prepared Security Assurance (SA) plan, akin to small PA plan, including SA milestone report DRD
- Reported SA activity outcomes in SA milestone reports as well as SA review-of-design (verification) report – including security requirements compliance/verification control matrix

Part 1: Background, Concept, Design


- Project Overview Main Objectives and Requirements
- System Characterisation Reference Architecture, Use Cases
- Threat/Security Risk Analysis Threats, Vulnerabilities, Risks
- Risk Countermeasures & Security Mechanisms
- CP Design and Communications Protocol Integration
- Security Assurance

Part 2: Implementation

- CP Architecture
- CP Hardware
- CP EGSE/Tester

Hardware Design Overview

- TC/TM serial link data rate 200 kbps
- CCSDS TC CLTU & TM CADU
- Control Interface 115 kbps UART
- External Key Cartridge (EE)PROM I/F
- 32 master keys
- 64 traffic keys. Update via TC command
- EDAC protected internal memory modules
- Anti-replay counter with recovery functions after power-up/reset
- Physical separation of control/data path

function and cryptographic function

• Power usage \leq 5W in all modes

Processor Board Layout

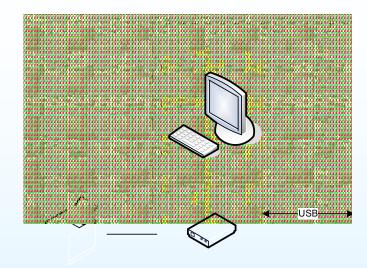
Size: 185 mm x 155 mm

FM layout principals with commercial parts used

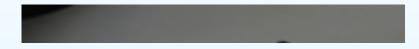
Prototype adapter used for RTAX footprint

CP Engineering Model Photos

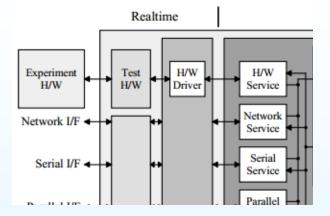
Front


Rear

- General verification to check general CP operational correctness:
 - Physical properties
 - o Electrical interface tests
 - o Functional and performance tests
 - Error cases, failure detection tests
- Validation against requirements:
 - Physical properties tests against requirements and ICDs and checking of correct configuration management
 - Verification of fulfilment of and adherence to functional and performance requirements inc. correct implementation of cryptographic algorithms
 - Review-of-design and inspection to verify fulfilment of non-testable requirements



- Laptop + interface adaptor box
- Interface box photos:



- Generate and save test sequences (test cases), and execute the defined test sequences / batches
- All different interfaces are operable simultaneously and independently of each other
- Analyze and verify the UUT data stream online and offline (i.e. verify the saved UUT data)
- Simulation of attacks at the interface level (e.g. replay of data),
- Injection of erroneous data into data stream (e.g. simulation of bit errors within the protocols)

GSEOS Software – System Diagram

Info	GSEOS:	5.35 XP	
DSI	SVN:	961	CP
Informationstechnik	DATE:	2014-04-29	
Serial			
Power Supply			- II
PS: COM 4	Closed 0	pen Close	
IF Board			
FP DLL		Devic	e

- Security risks and corresponding security measures for the PCC links were analysed
- Security concept developed
- Cryptographic processor (CP) requirements specification established
- CP designed and manufactured
- CP test equipment designed and manufactured
- CP demonstration model tested/verified