HASDEL

Final Presentation Days Tuesday, 09 December 2014

Presented by David LESENS & Marco BOZZANO

AIRBUS DEFENCE & SPACE

esa

Hardware Software Dependability for Launchers

RNTHAACHEN UNIVERSITY

Agenda

Introduction – Objectives of the HASDEL project

- The HASDEL approach
- Use cases
 - Equipment reintegration
 - ATV data handling system architecture
- Demonstration
- Conclusion

Objectives of the HASDEL project

Objectives

- Analysing the specific needs of launcher systems in the domain of RAMS (*Reliability, Availability, Maintainability and Safety*) analysis
- Extending the COMPASS toolset with these specific needs

Launchers and space transportation vehicles specificities

- High level of criticality
- Hard real time requirements
- Functional complexity
- RAMS requirement complexity (e.g. management of redundancies)

Hardware Software Dependability for Launchers

09/12/2014 p4

HASDEL

Agenda

Introduction – Objectives of the HASDEL project

- The HASDEL approach
- Use cases
 - Equipment reintegration
 - ATV data handling system architecture
- Demonstration
- Conclusion

The HASDEL Approach: Flow

09/12/2014 p7

The HASDEL Toolset

Comprehensive toolset

- Modelling in SLIM, a variant of SAADL
- Implementing the V&V flow and analyses illustrated in previous slides
- Based on state-of-the-art model checking tools

09/12/2014 p8

SLIM language

HASDEL enables modelling of:

- Behaviour using modes and states
- Data shared by connections and flows
- Timed/hybrid dynamics using clocks and continuous variables

ENCE & SPACE

FONDAZIONE BRUNO KESSLEB

HASDEL

Hardware Software Dependability for Launchers

SLIM: Timed Failure models

An example: modelling error propagation

- First transition with probabilistic rate
- Next transition with time delay

HASDEL

Hardware Software Dependability for Launchers

Fault injections

Nominal and failure models are coupled by fault injections

	Error Model	
Implementation:	equipment::gpsError.i	~
State:	permanent_failure	~
	Nominal Model	
Instance:	gps4.gps	~
Data element:	measurement	~
Effect:	False	

"When the error state is permanent_failure, gps.measurement becomes false"

Timed Property Patterns

HASDEL enables modelling of properties via instantiation of property patterns

Classes of property patterns

- Functional pat
 - E.g., absenc
- Timed patterns
 - E.g. absence
- Probabilistic p
 - E.g., probabi Time2 with p

711	Categories	Patterns	
Gl	All	propositional	
	Propositional	absenceGlobal	
	Functional	existenceGlobal	
	Timed	universalityGlobal	
	Probabilistic	precedenceGlobal	ne units"
++~		responseGlobal	
lle		responseExist	
stic	Pattern Story		tween Time1 and
be	The atomic proposition dpu.co	md always holds.	
	Description: Correctness	🔗 Discard 🛛 🖋 Con	firm

Timed Failure Propagation Graphs (TFPGs)

- Graph-like formalism to describe failure propagation
 - Faults
 - Interaction between different faults (AND/OR semantics)
 - Propagation delays (time intervals)
 - Context information (system modes)
 - Effects of fault propagation (discrepancies)
 - Observability (monitored and non-monitored discrepancies)
- TFPGs can be used for diagnosis and prognosis
- TFPG analyses supported by HASDEL
 - Validation of a TFPG with respect to a system model
 - Validation of TFPG as a model for diagnosis
 - Automatic synthesis of a TFPG from a system model

An Example TFPG

AIRBUS

DEFENCE & SPACE

0

RNTHAAC

FONDAZIONE BRUNO KESSLER

HASDEL

Hardware Software Dependability for Launchers

09/12/2014 p14

Fault Detection, Isolation and Recovery (FDIR)

Diagnosis system

- Plant (Physical Device) in closed loop with a controller
- Control is responsible for commanding actuators
- Diagnosis tracks the hidden state of the plant over time

Partial observability

Hardware Software Dependability for Launchers

 Only a limited number of observables (sensors) are available

HASDEL

Timed FDIR Analyses

Timed Diagnosability Analysis

- Check if there exists a diagnoser that can infer at run-time accurate and sufficient information to diagnose system properties (e.g., occurrence of faults)
- It helps identifying if enough observables are available for building an FDIR sub-system
- E.g.: "fault F is diagnosable within T time units"
- Timed FDIR effectiveness analysis
 - Check the effectiveness of an existing FDIR sub-system
 - Fault detection, fault isolation and fault recovery analyses
 - E.g.: "fault F can be detected by the FDIR sub-system within T time units"

Probabilistic risk analysis

Performability analysis

 Investigate model reliability

Numerical analysis

 Based on Markov Chain model checking

Statistical analysis

 Based on Monte Carlo method

FONDAZIONE BRUNO KESSLEB

ENCE & SPACF

HASDEL

Hardware Software Dependability for Launchers

Fault Tree analysis

Supports Fault Tree generation and evaluation

RR

DEFENCE & SPACE

FONDAZIONE BRUNO KESSLER

HASDEL

Hardware Software Dependability for Launchers

Agenda

- Introduction Objectives of the HASDEL project
- The HASDEL approach
- Use cases
 - Equipment reintegration
 - ATV data handling system architecture
- Demonstration
- Conclusion

Equipment reintegration

09/12/2014 p20

Equipment reintegration modelling principle

HASDEL

Hardware Software Dependability for Launchers

Hardware Software Dependability for Launchers

09/12/2014 p22

HASDEL

Agenda

- Introduction Objectives of the HASDEL project
- The HASDEL approach

Use cases

- Equipment reintegration
- ATV data handling system architecture
- Demonstration
- Conclusion

ATV data handling system architecture

Fault Tolerant Computer model

HASDEL

Hardware Software Dependability for Launchers

09/12/2014 p25

Properties

Property type	Property description
expectedTime	"The expected time to reach a state where the proposition <i>not failure</i> holds."
IongRunAverage	"The long-run average time spent in states where the proposition <i>not failure</i> holds."
probabilisticInvariance	"The probability that <i>not failure</i> holds continuously within timebound [<i>0 min</i> , <i>2 min</i>]"

Hardware Software Dependability for Launchers

09/12/2014 p26

Agenda

- Introduction Objectives of the HASDEL project
- The HASDEL approach
- Use cases
 - Equipment reintegration
 - ATV data handling system architecture
- Demonstration
- Conclusion

The sensor provides correct measurement

09/12/2014 p28

Electrical view

Error view

HASDEL

Hardware Software Dependability for Launchers

09/12/2014 p30

IHM

Random simulation

* 🖸				COMPASS	Toolset							\odot
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>A</u> c	tivities <u>H</u> elp											
Model Properties	Mission TFPG Validation Correctness Pr	erformability	Safety	FDIR								
Properties	Model Deadlock Model Zeno Ti	ime										
Name	Simulation Checking Checking Analysis D	ivergence										
	Model extended by Fault injections											
	Random 🗸 🕑 Run	Length: 10	۵ ا) Restart (Fa	ailu	re o	occi	ırre	nce	•
	✓ Simulation											
	Name	Step1	Step2	Step3	Step4	Step5	Step6	Step7	Step8	Step9	Step10	Step11
	- Fdir1_t_#delta	< 0	0	> 1/3600 >	(1/900	× <u> </u>	1/3600	< 0	0	0	1/3600	·
	- gps1 activated			====								
	- gps1_do_powerOff											
	- gps1_do_powerOn											
	– gps1_do_#tau											
	- gps1.error	ok	ot_failure	h t_failure	hot_failure							
	 gps1errorSubcomponent_activated 											
	- gps1errorSubcomponent_do_#hot_fault											
	- gps1errorSubcomponent_doresetEvent											
	- gps1errorSubcomponent_do_#tau											
	 gps1errorSubcomponent_reactivated 											
	 gps1errorSubcomponent_t_#delta 	0	0	1/3600	1/900		1/3600	0	0	0	1/3600	
	– gps1.gps_activated											
	- gps1.gps_do_#tau											
	- gps1.gps.measurement											$\hat{}$
	<											$\langle \rangle$
	Name: 🛷 Sto	ored: No Filt		Edit 💥								
		incar (normal	Z	Earc 🔸								

Simulation guided by transitions

* 🖸	COMPASS Toolset		0 0
<u>File Edit View Act</u>	tivities <u>H</u> elp		
Model Properties	Mission TFPG Validation Correctness Performability Safety FDIR		
Properties Name	Model Deadlock Model Zeno Time Simulation Checking Checking Analysis Divergence		
	✓ Model extended by fault injections Guided by Transitions ✓ P Run Length: 10 ♦ P Restart ↔ Jump	An availa	ble transition
	✓ Simulation	has to I	be selected
	Name Impl	Step1	Name
	 Extended_avionics1.i 		Bus.mode
	- fdir1 (1) Extended_fdir1_gps_fdir1.i		dpu.mode
	y gps1 (3) Extended_gps1_gps1.i	init	Fdir1.mode
	<pre>errorSubcomponent (2) gpsError1.Implementation</pre>	acquisition	gps1.gps.mode
	gps Extended_gps1_gps_gpsDevice1.i	offMode	gps1.mode
	mission Extended_mission_nission1.i	ground	mission.mode
			mode
	Transitions		
	✓ offMode -[_errorSubcomponent.#hot_fault when _errorState = _ok]-> offMode;		
	S offMode -[powerOffwhen_errorState = _transient_failure]-> offMode;		
	X offMode - [powerOn when _errorState = _po_more_error]+> onMode;		
	<pre></pre>		
	✔ offMode -[powerOn when _errorState = _ok]-> onMode;		
	68-4ode -[powerOff-when_errorState = _ok]-> offMode;		
	OnMode -[_errorSubcomponenenieronstein:cete meni_errorocace = _okj-> onMode;	_	
	Name: "*mode Stored: No Filter 🗸 🗾 Edit 💥		

Simulation guided by transitions

Properties	Model Deadlock Model Simulation Checking Checking	Zeno Time NO Analysis Divergence	more tra	nsitior	ns ava	
	 Model extended by fault inje Guided by Transitions Simulation 	ctions Run Length: 10 🔇 (a) Restart (4) -	Tim to	e pass b be de	sing h efined	as I
	Timed T	ransitions	Step1	Step2		Name
	No Constraint No constraint	Constraints about time duration:	in acqui offly gro	it	starting acquisition onMode ground	dpu.mode fdir1.mode gps1.gps.mod gps1.mode mission.mode mode
	Name: .*mode	Stored: No Filter V]

Model checking

+ 0	COMPASS Toolset	\odot \odot \odot			
<u>File E</u> dit <u>V</u> iew <u>A</u> ctivities <u>H</u> elp					
Model Properties Mission TFPG Validation Correctness Performability	Safety FDIR				
Properties	Model Deadlock Model Zeno Time				
me S Formula	Simulation Checking Checking Analysis Divergence				
Correctness The atomic proposition not dpu.failure always holds.	roposition not dpu,Failure always holds.				
	> Model Checker Options:				
	No results to show				
Solootion of a	There are no results to show at the moment				
Selection of a					
properties					

Model checking

+ 👳	COMPASS Toolset	© © ©
File Edit View Activities Help Model Properties Mission TFPG Validation Correctness Performability	v Safety FDIR	
Properties	Model Deadlock Model Zeno Time	
Name MC Formula	Simulation Checking Analysis Divergence	
Correctness 🚯 The atomic proposition not dpu.failure always holds.	 Run Model Checking Model extended by Fault Injections Model Checker Ontion The property is true up to bound 10 The LTL property: G not dpu. failure has been found true up to bound 10. 	28
	The property is proved o	orrect

Time divergence analysis

+ 🕤 File Edit	View Activities Help	COMPASS Toolset	⊗ ⊘ ⊗
Model	Properties Mission TFPG N	Validation Correctness Performability Safety FDIR	
Nag	Properties MC Eprovula	Model Deadlock Model Zeno Time Simulation Checking Checking Analysis Divergence	
- Non		Run Time Divergence SAT Bound: 10	Model extended by Fault Injections
		Enabled Clocks Bounds Time Scale Unit Beer the	
		✓ fdir1t 0.0 b The clock fdir1t is " UNBOUNDED " ✓ gps1.gpst 0.0 nour The clock gps1.gpst is " UNBOUNDED " ✓ missiont 0.0 nour The clock missiont is " UNBOUNDED "	
		• No Results to show. There are no results to show at the moment.	s incorrect

Generation of Fault Trees

Generation Timed Failure Propagation Graphs

Agenda

- Introduction Objectives of the HASDEL project
- The HASDEL approach
- Use cases
 - Equipment reintegration
 - ATV data handling system architecture
- Demonstration

Conclusion

The HASDEL Toolset

Distribution

- Freely available for ESA member states
- Released under variant of GPL (GNU Public License) restriction to ESA member states + some back-ends released under FBK's Additional Components License
- Needs ESA approval for export outside ESA member states

http://compass.informatik.rwth-aachen.de

Conclusion

• . . .

Some improvements still needed for deployment

- Semantics of some language constructs
- Link with SysML tool
- Improve performances on the analysis tools

But HASDEL could bring great benefits

- It allows early RAMS analyses before the actual development
- RAMS analyses are automated

http://compass.informatik.rwth-aachen.de

HASDEL

Hardware Software Dependability for Launchers

Thank you for your attention Any question ?

David Lesens Joost-Pieter Katoen Alessandro Cimatti david lesens@astrium.eads.net katoen@informatik.rwth-aachen.de cimatti@fbk.eu

