
 European Space Agency (ESA), 2014

EGS-CC
PROCEDURE
EXCHANGE WITH
OTX

FINAL PRESENTATION

 European Space Agency (ESA), 2014

Agenda

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 2014

1. Introduction

2. OTX (Open Text sequence eXchange Format)

3. Procedures Exchange with OTX

4. Support for the EGS-CC

5. OTX Development Environment (IDE)

6. Open Test Framework (OTF)

7. The Proof of Concept (PoC)

8. Demo

9. Further Activities

10. A.O.B.

12/12/2014EGS-CC PROCEDURE EXCHANGE WITH OTX Page 3

Agenda

 European Space Agency (ESA), 2014

Introduction

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 5EGS-CC PROCEDURE EXCHANGE WITH OTX

Introduction

© European Space Agency (ESA), 201412/12/2014 Page 6EGS-CC PROCEDURE EXCHANGE WITH OTX

Main objective: Analysis of suitability of OTX as a common procedure exchange format between
EGS-CC-based systems.

It should be considered that in the target scenario, each of the parties involved in a mission
(manufacturer, providers, operators, etc.), using their own language are able to exchange
procedures for their execution in different contexts that covers their lifetime.

Aiming at this objective, this Study has performed a formal / theoretical analysis of the OTX language
compared to the selected DSLs used in the Space Industry: SPELL, PLUTO, TOPE and ISIS.

The Proof of Concept (PoC) prototype supports the analysis of key aspects of the eventual adoption
of OTX as exchange language in EGS-CC. In this particular case, the effective translation has been
restricted to SPELL. In a further translation, the OTX has been converted into Java code, executed
against the MCM emulator.

The provided MCM emulator keeps certain degree of fidelity to the EGS-CC philosophy and
structures, according the currently available documentation

The Study has followed two main objectives:

 Translation of a procedure from DSL to OTX and back to the DSL

 Execution of the translated procedure in an EGS-CC-compliant runtime environment to proof the
compatibility with EGS-CC concepts like the MCM (PoC provided emulator)

Debugging capabilities have been demonstrated at OTX level, although the debugging at DSL
environment level has been also considered but in a theoretically way

Introduction

 European Space Agency (ESA), 2014

The OTX (Open
Test eXchange)
language

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 2014

OTX – Open Test sequence eXchange, standardized in ISO
13209

Domain specific language (DSL) on high
abstraction level to create executable test sequences

Platform and tester independent exchange format for

formal description of test sequences

Includes domain specific concepts to reduce the
presentation to the actual test logic

Application area: Vehicle diagnostics and Test
automation

What's OTX?

8EGS-CC PROCEDURE EXCHANGE WITH OTX

Goal: Creation, exchanging, archiving and
execution of verified test sequences

12/12/2014

© European Space Agency (ESA), 2014

OTX Extensions

9EGS-CC PROCEDURE EXCHANGE WITH OTX

DiagCom
DiagDataBrowsing

DateTime EventHandling

…Job/Flash

I18n

StringUtil Math

Measure

Quantities

HMI

Logging

Diagnostic Tester Application

OTX Core Processing System

OTX

Diagnostic Runtime System
(e.g. MVCI Server, D-Server, …)

Measurement
Data Acquisition

Other Device
(e.g. HIL-API,
ASAM GDI)

HMI Device
(e.g. Keyboard,

Mouse, Screen …)

12/12/2014

© European Space Agency (ESA), 2014

OTX Execution – Runtime Environment

10EGS-CC PROCEDURE EXCHANGE WITH OTX

…

Lua Script

C++

C#

Java

OTX Runtime Environment

HMIHMIMVCI-Server
DiagCom, Flash, Job,
DiagDataBrowsing

• DSA Prodis MCD
• VW-MCD
• Softing DTS COS
• Siemens
• …

MVCI-Interface

HMIHMIHMI

HMI-Interface

• Screen Mapping
• Generic Screen
• Windows Form
• …

HMIHMILogging

Logging-Interface

• Log4Net
• …

HMIHMIMeasure

Measure-Interface

• Device Mapping
• …

Extension

Implementation

Target Platform

OTX

OTX only describes the test logic

Runtime implementation is application-specific

12/12/2014

© European Space Agency (ESA), 2014

OTX is Domain Specific

Specialized language with a reduced, well-formed command set to describe and
execute Tests in an industrial environment

 Allow solutions to be expressed in the idiom and at the level of abstraction of
the problem domain

 Self-documenting and better readable code

 Less technical code with less redundancy

 Allows validation of semantic errors during design time (> 100 checker
rules)

 Easy to learn and to understand

 Enhanced quality, productivity, reliability, maintainability, portability and
reusability

OTX is an ISO Standard

Gives each user the guarantee that investments are protected

 Long term archiving of testing knowledge

 Availability of standard tool solutions

Main advantages of OTX

12/12/2014 Page 11EGS-CC PROCEDURE EXCHANGE WITH OTX

© European Space Agency (ESA), 2014

Automotive moves from proprietary solutions to standards to be
able to manage the increasing complexity: Number and variants
of Electric/Electronic components in the car.

Ongoing transition from proprietary solutions in C++ to Java and
now to OTX to standardize testing procedures

OTX was created to replace Java-Jobs in diagnostics applications
as these are not process safe

OTX is already proven in automotive industry

OTX allows to concentrate on test logic abstracting from
implementation details

OTX Conclusion

12/12/2014 Page 12EGS-CC PROCEDURE EXCHANGE WITH OTX

 European Space Agency (ESA), 2014

Procedures
Exchange with
OTX

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 14EGS-CC PROCEDURE EXCHANGE WITH OTX

The translation from one programming language to another is a complex task

A programming language is a formal constructed language designed to
communicate instructions to a computer

A programming language consist of Syntax (form) and Semantic (meaning)

The Syntax consist of a Data Model and the Notation

The Data Model mainly consist of I/O Commands, Type System, Control
Structures and a set of basic methods to handle numbers and characters

Except the Type system the Data Model of different programming languages are
similar but mostly not identical

For Execution a programming language have to be translated into an executable
format.

General Translation Aspects

Type Systems: Java SPELL OTX

Weakness Strong Strong Strong

Validation Static Dynamic Static

Explicit / Implicit Explicit Implicit Explicit

© European Space Agency (ESA), 2014

Same Data Model (OTX) different Notation

12/12/2014 Page 15EGS-CC PROCEDURE EXCHANGE WITH OTX

XML (according to ISO 13209)

Graphic*

* Developed by EMOTIVE

OTL* (Open Test sequence Language)

© European Space Agency (ESA), 2014

General architecture of translating
DSL  OTX  DSL

12/12/2014 Page 16EGS-CC PROCEDURE EXCHANGE WITH OTX

Import
Ast2Ast

Parse
Doc2Ast

DSL DSL
AST

OTX
AST

Export
Ast2Doc

Export
Ast2Ast

Export
Ast2Doc

DSL DSL
AST

Export
Ast2Class

Import
Doc2Ast

Display
(Designer)

OTX

Generate
Ast2Doc

1 2 5

4

3

678

JAVA
AST

DSL = Domain Specific Language
AST = Abstract Syntax Tree = Data Model

© European Space Agency (ESA), 201412/12/2014 Page 17EGS-CC PROCEDURE EXCHANGE WITH OTX

Different Data Models DSL/OTX

Three possible main translation types:

 One element in DSL can match to exactly one element in OTX

 One element in DSL can match to more than one elements in OTX

 One element in DSL cannot match to one or more elements in OTX 
OTX Extension needed

In practice, all three types will occur! Therefore, the back translation
will result in a different DSL.

Basic Translation Problem
DSL/OTX

DSL OTX DSL*

OTXDSL

GPL

© European Space Agency (ESA), 201412/12/2014 Page 18EGS-CC PROCEDURE EXCHANGE WITH OTX

An unsigned integer variable in a PLUTO procedure is translated to a
signed integer variable in OTX (64 Bit). The translator, when
obtaining PLUTO code back from OTX, will then generate a signed integer
variable because it cannot know that the original was unsigned.

A SPELL statement containing a bit shift expression is translated to a
set of OTX statements using the OTX bit shift statement, temporal
variables and ByteField values. The translator from OTX code back to
SPELL will keep the multiple statements and may use a different type for
ByteField.

A Watchdog in a PLUTO procedure is translated to multiple checking
statements interposed between the main procedure statements (one
translation choice suggested in the project). The translator from OTX
code back to PLUTO will keep the statements instead of creating a
watchdog procedure.

Basic Translation Problem
Samples DSL1  OTX  DSL1

© European Space Agency (ESA), 201412/12/2014 Page 19EGS-CC PROCEDURE EXCHANGE WITH OTX

An unsigned integer in a PLUTO procedure is translated to a signed
integer in OTX and then to an unlimited length signed integer in
SPELL.

If SPELL is translated to OTX by extending OTX with a new type Variant
instead of using type inference, then when translating from OTX to
PLUTO the same problem appears again (translating from a dynamic to
an static language) but this time PLUTO cannot be extended in the
same way.

A SPELL bit shift expression is translated to a new extended bit shift
expression in OTX including a bit shift statement and ByteField values,
and then to multiple statements in PLUTO using a multiplication (or
division) by a power of two, because PLUTO does not have bit shift
operators.

A procedure with parallel steps and watchdogs in PLUTO is translated
to OTX, losing at least some behavior for the watchdogs. This procedure
cannot be translated to SPELL because it does not have constructs for
in-procedure concurrency.

Basic Translation Problem
Samples DSL1  OTX  DSL2

© European Space Agency (ESA), 201412/12/2014 Page 20EGS-CC PROCEDURE EXCHANGE WITH OTX

The main problem is the different data
model between each DSL included OTX!

 Differences in basic types and functions

 Differences in control flow constructs

 Differences in the type system

But with a certain effort it is possible to translate a DSL to OTX and
also back to the original DSL

A translation from DSL 1 to OTX and back to DSL 2 seems to be
impossible without an huge effort

Not all statements OTX can directly translated into a related OTX
statement (Action or Term)

OTX have to extent to new Actions and Terms

Translation back from OTX to DSL results in a different DSL code

All problems above are general problems and not related to OTX itself!

Translation Problem Conclusion

OTX

DSL 1

DSL 2

© European Space Agency (ESA), 2014

For the execution the OTX documents have to be translated into
an executable language  called Code Generation

The generated target code can be compiled and executed

In most cases the target code should be a GPL like Java, C# or
C++

ESA decides for Java

Comparing the DSL/OTX translation problem, the code generation
OTX to GPL

 expected no blocking problems

 is easy to implement and

 independent from the target language

Translation/Generation of executable
Code (execution language – Java)

12/12/2014 Page 21EGS-CC PROCEDURE EXCHANGE WITH OTX

© European Space Agency (ESA), 2014

Main approaches comparison

12/12/2014 Page 22EGS-CC PROCEDURE EXCHANGE WITH OTX

SPELL PLUTO TOPE ISIS

EL1 EL2 EL3 EL4

MCM
(Runtime System)

1
SPELL PLUTO TOPE ISIS

Java

MCM
(Runtime System)

2

CSL CSL CSL CSL

Java

MCM
(Runtime System)

4
SPELL PLUTO TOPE ISIS

CSL CSL CSL CSL

Java

MCM
(Runtime System)

3

EL1 = Execution Language 1 (Python)
CSL = Common Sequence Language

Criteria Original (1) DSL + Java (2) DSL + CSL + Java (3) CSL + Java (4)

Binary Compatibility Bad Very Good Very Good Very Good

Debugging at abstract Level Good Good Good Very Good

Reusability & Exchangeability Very Bad Bad Good Very Good

Process Safety Very Bad Normal Normal Very Good

© European Space Agency (ESA), 2014

Comparison table for DSL candidate for
approach 4

12/12/2014 Page 23EGS-CC PROCEDURE EXCHANGE WITH OTX

Criteria One existing DSL Java OTX

Level of Standardization N/A Good Very Good

Independency Good Very Good Good

Reusability Normal Normal Very Good

Exchangeability Good Good Very Good

Extensibility Normal Very Good Good

Scalability Normal Very Good Good

Usability Normal Bad Very Good

Separation of Test Logic and Runtime Normal Bad Very Good

Completeness Normal Very Good Normal

Long-term Maintainability N/A Bad Very Good

Data Driven Bad Bad Very Good

Process Safety Very Good N/A Very Good

Domain Specific Validity Bad Bad Very Good

Change Effort Good Good Normal

Productivity Good Bad Good

© European Space Agency (ESA), 2014

This approach use OTX as the core language format. Due
to the fact, that the execution language shall be common
to all EGS-CC systems, it offers this possibility for a clear
and straight process.

1. The User delivers the DSL procedure, which is
translated into OTX but no translation back to the DSL.
The executable language will be generated from OTX.

For a DSL user, nothing has been changed. The System
Integrator has to perform the work to translate each
DSL procedure into OTX. The System Integrator
remains responsible for the results as is already the
case. Nevertheless, the solution is better than the
current, because the interface is well-defined and the
quality of the translated OTX code can be verified.

2. The responsibility is transferred to the DSL User. The
DSL user should deliver an already proven OTX code.
The responsibility for the System Integrator decreases
and the overall quality increases.

3. The DSL user has changed its process to OTX. Now he
is also able to share code with other DSL users. OTX is
now a real exchange language.

Main advantages:

 Forward-looking process

 Interfaces and responsibilities are clearly defined

 Seamless migration from old to new is possible

 Validation and process safe

Use of OTX as a real exchange format

12/12/2014 Page 24EGS-CC PROCEDURE EXCHANGE WITH OTX

SPELL

PLUTO

TOPE

ISIS

JAVA
(Execution Language)

OTX

OTX

OTX

OTX

OTX

JAVA
(Execution Language)

OTX

OTX

OTX

OTX

JAVA
(Execution Language)

SPELL

PLUTO

TOPE

ISIS

Step 1

Step 2

Step 3

 European Space Agency (ESA), 2014

Support to the
EGS-CC

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 26EGS-CC PROCEDURE EXCHANGE WITH OTX

There is no impact caused by the use of OTX in the requirements of the EGS-
CC procedure development environment. Reason: OTX defines only the
language itself and not its development or execution environment.

Some possible conflicts are more about the language itself than about the
development environment:

 EGSCC-PREP-REQ-010250 Automation procedures language requires that
the language used to write procedures shall be compatible with the Space
Engineering

In particular, OTX does not directly support the data types unsigned
integer, time, duration, multidimensional arrays or arbitrary structured
data, and the units of measure provided by OTX do not fit exactly in what
is specified by Space Engineering. But OTX can be extended for such types.

 EGSCC-PREP-REQ-010270 Automation procedures language extension
requires that the language provides global variables. This seems to be in
conflict with the OTX requirement “No global variables with global scope”.
Note: Global variables are possible in OTX, but they shall have the visibility
private. This means, that they can only use within and document and not
outside.

Support to EGS-CC

 European Space Agency (ESA), 2014

Open Test
Framework

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 2014

Open Test Framework (OTF)

12/12/2014 Page 28EGS-CC PROCEDURE EXCHANGE WITH OTX

 European Space Agency (ESA), 2014

Proof of Concept
(PoC)

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 30EGS-CC PROCEDURE EXCHANGE WITH OTX

Proof of Concept (PoC) General
Architecture

Open Test Framework
Extensions Runtime Environment

Runtime Environment

OTX Designer
(Editing, Validating,

Maintenance, Testing,
Documenting,

Archiving)

OTX
Runtime

Target Code
Generator

OTX
Code

Runtime System
Implementation N

(MCM)

Executable
Binary

Compiler

Debugging Interface
(Transport Layer: Sockets)

Runtime System
Implementation 3

(DiagCom)

Runtime System
Implementation 2

(Logging)

EventHMI

Date
Time

Log-
ging

Math

Quanti
ties

String

Measu
re

File/
Xml

Core+

Runtime System
Implementation 1

(HMI)

SPELL
Other User

Specific
Extensions

Translator
(From and to other

DSL)

SPELL Project Extensions

.N
E
T
 I

m
p
le

m
e
n
ta

ti
o
n

JA
V
A
 I

m
p
le

m
e
n
ta

ti
o
n

© European Space Agency (ESA), 2014

 Translator from DSL to OTX (Importer)

 Translator from OTX to DSL (Exporter)

 Translator from the OTX to the Executable language – JAVA

 Interfaces with the EGS-CC Emulator (MCM) applied to:

 The Space libraries (database) interface in OTX, for adapting the
Executable Language to the Space Domain specific needs

 The interface to the MIB database for specify the variable types
used in the provided operational procedure and the verification of
the addressed data and displays

 The interface and mechanisms for debugging execution of the
translated operational procedure in the Java runtime environment.
For simplicity and cost reduction, Java shall not be directly
generated. The currently generated C# code is transformed into
Java. Please note that no matter how the code is generated, the
result is the same.

 EGS-CC (MCM) emulator – a mock-up application emulating the
actual approach for the EGS-CC system

Proof of Concept (PoC) Main Elements

12/12/2014 Page 31EGS-CC PROCEDURE EXCHANGE WITH OTX

 European Space Agency (ESA), 2014

Conclusions

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 33EGS-CC PROCEDURE EXCHANGE WITH OTX

1. It has been demonstrated, that OTX is fully suitable to specify test
procedures in the Space domain

2. Translation from SPELL to OTX is possible with 100% functionality

3. Translation back from OTX to SPELL is possible but it results in a
different, but semantically identical SPELL code (It’s a general
translation phenomena)

4. Connection between OTX and MCM/SSM has been successfully
demonstrated

5. Due to 3. it has been decided not to recommend OTX as exchange
format for the EGS-CC if the stakeholders keep procedures in their
DSLs

6. We recommend to use OTX with Space related Extensions as an
exchange format and DSL

Conclusions

 European Space Agency (ESA), 2014

Thank you

EGS-CC PROCEDURE EXCHANGE WITH OTX

e-mails:

R. Sánchez-Beato Fernández <rsbf@gmv.com>

Jörg Supke <joerg.supke@emotive.de>

© European Space Agency (ESA), 201412/12/2014 Page 35EGS-CC PROCEDURE EXCHANGE WITH OTX

1. Definition, coordination and implementation of new Space relevant
OTX Extensions

2. Implementation of complete OTX-Runtime in Java

3. Fully support of MCM-Runtime-System from OTX

4. Proof of concept in a real Space environment

5. Setup of an OTX driven process for test procedures in Space industry

Further Activities

 European Space Agency (ESA), 2014

Demo

EGS-CC PROCEDURE EXCHANGE WITH

OTX

© European Space Agency (ESA), 201412/12/2014 Page 37EGS-CC PROCEDURE EXCHANGE WITH OTX

Proof of Concept (PoC): Demo

