
www.bsc.es

PMCs for real-time multicore systems:
analysis of the state of the art and initial proposal

Francisco J. Cazorla, Jaume Abella
Javier Jalle, Mikel Fernandez

Leonidas Kosmidis

Luca Fossati (TO)
Marco Zulianello

Software Systems Division & Data Systems Division Final Presentation Days
ESTEC WWednesday 10th of December 2014

Goal

Performance Monitoring Counter (PMC) infrastructure that
helps providing insight information about the effect of
contention among corunning tasks (a.k.a. corunners)
– Focus on the NGMP

After running my application in a multicore I want to know
– Where my cycle went?
– How many cycles in waste due to contention

Contention Cycle Stack

Francisco J. Cazorla (francisco.cazorla@bsc.es) 2

Contention cycle stack: concept

Core cycles:
– Cycles in which the program is proceeding

with no stalls (useful cycles)
– Cycles in which the pipeline is stalled (no

instruction can be committed) due to a local
stall

Francisco J. Cazorla (francisco.cazorla@bsc.es) 3

Contention cycle stack: concept

For each shared resource (bus, L2cache,
memory)
– Cycles in which the task (t0) actually use the

resource (green)
– Cycles in which the task was stalled due to other

tasks (t1, t2, t3)
• Yellow, orange, red  cycles consumed due to

contention

Francisco J. Cazorla (francisco.cazorla@bsc.es) 4

Contention cycle stack: example

Francisco J. Cazorla (francisco.cazorla@bsc.es) 5

In a nutshell

What are we doing?
– Using PMCs to provide the end user a radiography of its application in

terms of consumed cycles in the processor
– Not interested in the breakdown of cycles

at core level, but breakdown contention
cycles

Contention cycle Stack Benefits
– Scheduling

• Determine bad/good corunners
– Timing Analysis

• Determine in the worst-case path(s) how cycles
are consumed

Francisco J. Cazorla (francisco.cazorla@bsc.es) 6

Outline

Analysis of current PMCs
– IBM POWER7
– Intel Family
– ARM v7
– P4080
– NGMP

Initial thoughts about contention cycle stack

Francisco J. Cazorla (francisco.cazorla@bsc.es) 7

IBM POWER7

Francisco J. Cazorla (francisco.cazorla@bsc.es) 8

[P7-desc]

[P7-desc] B. Sinharoy et al. IBM POWER7 multicore server processor. IBM J. Res. Dev. , 55:191–219, May 2011

IBM POWER7

Francisco J. Cazorla (francisco.cazorla@bsc.es) 9

[P7-desc]

[P7-desc] B. Sinharoy et al. IBM POWER7 multicore server processor. IBM J. Res. Dev. , 55:191–219, May 2011

IBM POWER7

Performance Monitoring Unit (PMU)
– Six thread-level Performance Counter Monitors (PCMs).
– Four of these are programmable from software to monitor the desired

(four) events at the same time.
– There are more than 500 possible performance events that can be

read.
– However, performance counters are defined by groups and the PMU

can only watch events of the same groups at one time.
– Some counters are per-thread and others are per-core

Francisco J. Cazorla (francisco.cazorla@bsc.es) 10

IBM POWER7

Type of PMCs
– Number of cycles a resource is full (with this causing the stall of the

processor),
– Number of cycles a resource is empty.

• This can be of a private resource of a shared resource. The latter meaning
that none of the threads that can generate a

– request to that resource have done so.
– Number of instructions of a given type
– Number of events of a given type (e.g. prefetch requests sent, …)
– Number of references to a given resource (e.g. L2 accesses, …)
– Quantity of data transferred
– Stall cycles due to inter-task conflict

Francisco J. Cazorla (francisco.cazorla@bsc.es) 11

Intel

Processors:
– superscalar execution, complex branch predictors, out of order

execution, and several levels of cache memories (up to three).

PMCs provided by Intel:
– Focus on providing performance metrics for a single process (branch

predictor effectiveness, cache misses due to speculative execution,
coherence protocol metrics, etc)

– Not designed to help identify bottlenecks in resources shared between
cores

– Nor to quantify the magnitude of interactions in the shared resources.
• A lot of counters provide measurements for time spent accessing a shared

resource
• They measure average or total accumulated time, and they do not identify

possible interferences caused by other cores.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 12

Intel

Many shared resources have PMCs that measure their
behaviour number of accesses, average latency, etc)
With some experimentation, information about inter-processor
conflicts can be guessed:
Number of L2 cache lines evicted by another process
– Comparing the observed number of L2 misses when running in

isolation with the number of L2 misses when running concurrently with
a competing process.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 13

Intel

We have classified PMCs in:
– Instruction type: no. of retired instructions of a type (branch, load, …)
– Event count: microinstructions issued, branch instructions executed ...
– Reference count: number of referenced lines in each MESI state…
– Threshold exceeding event count: number of times a threshold

specified in number of cycles has been exceeded for a given event.
– Number of outstanding requests per core: cache requests, all offcore

requests, etc. in the moment of reading the counter.
– Busy resource cycles: number of cycles in which the caches are busy,

a resource is unavailable, stalled core, etc.
– Cycle count: unhalted core cycles, unhalted thread cycles, cycles with

outstanding cache misses, TLB walk duration, etc.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 14

ARMv7-A architecture

Provides 6 different 32-bit counters
Used by several different processors: Cortex-A7, Cortex-A9,
Cortex-A15, the big.LITTLE system, and others.
Includes a set of control registers to allow performance
monitoring. The most important of them are:
– PMXEVCNTR, which holds the value of the configured PMC.
– PMSELR, which configures the counter that will be used when

counting an event.
– PMXEVTYPER, which selects the event that will increment the

selected counter.
– PMCCNTR, which counts the amount of cycles (or cycles/64).
– Counters are set and cleared using the PMCNTENSET and

PMCNTENCLR registers.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 15

ARMv7-A architecture

The events counted by ARM architectures can be classified in
the following types:
– Instruction type: number of retired instructions of a certain type

(branch, load, store, etc).
– Event count: miss-predicted branches, number of exceptions, etc.
– Reference count: number of L1 accesses, bus accesses, data memory

accesses, unaligned accesses to memory, etc.
– Cycle count: CPU cycles, bus cycles.
– Resource-specific event count: L1 write backs, number of L1/L2 refills.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 16

NGMP*

NGMP architecture is continuously evolving and, indeed, also
the counters are changing
– Data about LEON4 is that by the time the activity was carried out

It contains one or more LEON4 Statistical Unit (L4STAT).
L4STAT allows configuring any available four events we want
to monitor.
– These 4 counters are 32-bit wide and reset to 0 on overflow.
– Each counter has an associated control register
– Divided in three different categories:

• Processor events: events generated by the processor, e.g., pipeline or the
L1 cache.

• AHB events: events generated by the AHB bus, e.g., AHB busy cycles or
number of read accesses.

• Device specific events: events generated by other devices such as the L2
or the IOMMU.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 17

The counters and stat unit has evolved
with respect to what presented in the

slides
(in part also thanks to the results of this activity)

NGMP

Francisco J. Cazorla (francisco.cazorla@bsc.es) 18

NGMP

Available counters can be as:
– Busy resource cycles: the resource is unavailable because it is busy.

For example AHB busy cycles
– Idle resource cycles: the resource is not being used. For example AHB

idle cycles
– Cycle count: other events counting cycles. For example, CPU cycles.
– Instructions of a given type: Load, store, floating point, integer, total

count.
– Event count: number of mispredictions, IOMMU errors,
– Reference count: AHB accesses L1 and L2 accesses and misses
– Maximum Count mode

Francisco J. Cazorla (francisco.cazorla@bsc.es) 19

NGMP

Maximum Count mode (Mcm)
– While in this mode, the counter keeps the maximum amount of time the

selected event has been asserted.
– Count the maximum amount of time between two event assertions.

Maximum count

Using Maximum Count Mode it could be possible, e.g.:
– To count the longest burst of AHB busy cycles
– The longest amount of time the bus has been without having a read

access.

The availability of this counter is implementation dependant

Francisco J. Cazorla (francisco.cazorla@bsc.es) 20

Summary

In all the studied architectures:
– PMCs are used to improve average system,
– performance by monitoring software execution,
– characterizing processors behaviour, and/or
– helping system developers bring up and debug their systems.

Few exceptions of counters exist that help understanding the
effect of inter-task interferences.
– The POWER7, Intel, and the NGMP have been identified to have

PMCs that provide some information about inter-task interferences and
maximum (worst) duration of a stall event (situation).

Francisco J. Cazorla (francisco.cazorla@bsc.es) 21

Summary

In general, we observe lack of detailed inter-task interference
PMC support.
Some information about inter-task interference can be derived
in controlled scenarios.
– In a first run the program under study is run in isolation recording

PMCs.
– In a subsequent run the program under study is run again, maintaining

the same input data sets as part of the workload.
– By subtracting the PMCs in the first run for those in the second run

some inter-task interference information can be obtained.
– Complexity

• Analysing the program with the same input data in all runs
• Alignment among tasks

Francisco J. Cazorla (francisco.cazorla@bsc.es) 22

Outline

Analysis of current PMCs
– IBM POWER7
– Intel Family
– ARM v7
– P4080
– NGMP

Initial thoughts about contention cycle stack

Francisco J. Cazorla (francisco.cazorla@bsc.es) 23

Theoretical approach

Break total execution cycles, 𝑡𝑖, into useful, 𝑢𝑖, and stalled, 𝑠𝑖
– 𝑡𝑖 = 𝑢𝑖 + 𝑠𝑖

𝑠𝑖 breakdown into
– stalls due to local activities (e.g. handling a long latency FPU

instruction, pipeline stalls, etc…), 𝑙𝑖
– Stalls due to contention in shared resources, or external stall, 𝑒𝑖.
– 𝑠𝑖 = 𝑙𝑖 + 𝑒𝑖

Francisco J. Cazorla (francisco.cazorla@bsc.es) 24

Theoretical approach

𝑒𝑖 : For each resource 𝑛 in 𝑁𝑅 inter-task interferences, 𝑖𝑖𝑖𝑖𝑛,
covers cycles in which the processor i was stalled due to
some contention from core j
– 𝑒𝑖 = ∑ 𝑢𝑖𝑛 + 𝑖𝑖𝑖𝑖𝑛

𝑁𝑅−1
𝑛=0

𝑖𝑖𝑖𝑖𝑛 interference suffered by core 𝑖 on resource 𝑛 because of
each core 𝑗 of all 𝑁𝐶 cores is defined as 𝑖𝑖𝑖𝑖←𝑗𝑛 ,
– 𝑖𝑖𝑖𝑖𝑛 = ∑ 𝑖𝑖𝑖𝑖←𝑗𝑛𝑁𝐶−1

𝑗=0

The final itiCPIstack is given by:
– 𝑡𝑖 = 𝑢𝑖 + 𝑙𝑖 + ∑ 𝑢𝑖𝑛 + ∑ 𝑖𝑖𝑖𝑖←𝑗𝑛𝑁𝐶−1

𝑗=0
𝑁𝑅−1
𝑛=0

Francisco J. Cazorla (francisco.cazorla@bsc.es) 25

Implementation

NGMP Simulator validated with a real
processor implementation[1]
– EEMBC Benchmark suite only 3% error at

cycle level.
– Real application only 0.9% error at cycle

level

Focus:
– Bus and memory
– L2 cache is partitioned

Francisco J. Cazorla (francisco.cazorla@bsc.es) 26

Figure: NGMP N2X Evaluation
Board. Source: Aeroflex Gaisler

[1] ESA NPI. 1322010. Architectural solutions for the timing predictability of next-generation multi-core
processor. Javier Jalle.

Implementation

We envision having an inter-task interference module (iti-
module), which is similar to a statistics unit, which
concentrates the main logic required for computing the
CPIstack.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 27

Example: breaking down contention in AMBA bus

Master ready to send a request  HBUSREQ signal asserted
When granted access:
– HGRANT signal for that master and puts the
– master id in the HMASTER signal.

tgrant-up- treq-down gives the time a request from a given task TA is
waiting to get access to the bus (tA-iti)  contention delay

Francisco J. Cazorla (francisco.cazorla@bsc.es) 28

Example: breaking down contention in AMBA bus

We propose to send HBUSREQ signals from each master and
the HMASTER signal from the arbiter to the iti-module.
By checking these signals the iti-module can infer which
master is using the bus, thus the useful cycles, and the time a
master has been waiting for another master.

Francisco J. Cazorla (francisco.cazorla@bsc.es) 29

Memory

Memory controller design:
– Memory bus and memory controller only accept one request at a time
– FIFO request queue to store L2 misses coming from the cores

Request from a core 𝑖 arrives to the
– Queue empty  put on the top of the FIFO and accesses the memory

immediately consuming the intrinsic latency or useful cycles 𝑟𝑟𝑖𝑚𝑚.
– Queue not empty  wait other requests to finish since the
– The cycles on the memory are:

𝑐𝑐𝑐𝑖𝑚𝑚𝑚 = 𝑟𝑟𝑖𝑚𝑚𝑚 + � 𝑟𝑟𝑟𝑟𝑖←𝑗𝑚𝑚𝑚
𝑁𝐶−1

𝑗=0

Francisco J. Cazorla (francisco.cazorla@bsc.es) 30

Results

Cycle contention stack does not
have LLC1, LLC2 or LLC3
interference components.
AOCS cycles spent in memory
affected by corunner in core2

Francisco J. Cazorla (francisco.cazorla@bsc.es) 31

www.bsc.es

PMCs for real-time multicore systems:
analysis of the state of the art and initial proposal

Francisco J. Cazorla, Jaume Abella
Javier Jalle, Mikel Fernandez

Leonidas Kosmidis

Luca Fossati (TO)
Marco Zulianello

Software Systems Division & Data Systems Division Final Presentation Days
ESTEC WWednesday 10th of December 2014

	PMCs for real-time multicore systems: �analysis of the state of the art and initial proposal
	Goal
	Contention cycle stack: concept
	Contention cycle stack: concept
	Contention cycle stack: example
	In a nutshell
	Outline
	IBM POWER7
	IBM POWER7
	IBM POWER7
	IBM POWER7
	Intel
	Intel
	Intel
	ARMv7-A architecture
	ARMv7-A architecture
	NGMP*
	NGMP
	NGMP
	NGMP
	Summary
	Summary
	Outline
	Theoretical approach
	Theoretical approach
	Implementation
	Implementation
	Example: breaking down contention in AMBA bus
	Example: breaking down contention in AMBA bus
	Memory
	Results
	PMCs for real-time multicore systems: �analysis of the state of the art and initial proposal

