

Ultra-Wideband as a Multi-Purpose Robust and Reliable Wireless Technology for Testing, Spacecraft and Launcher Communications

Lukas Szemla 10th December, 2014

UWB demonstrator

• Goal:

- Assessment of IR-UWB suitability for space applications and development of reliable and deterministic network demonstrator
- Project phases:
 - 1) Use case identification and requirements capture
 - 2) Analyzes of technology candidates (PHY and protocol stack)
 - 3) Simulations
 - 4) Demonstrator development
 - 5) Measurement and testing

Use cases considered

AIT sensor network

Honeywell

- Thermal testing
- Vibration testing

Onboard sensor network

- Housekeeping subsystem
- Navigation subsystem
- Command and Control
 - Highly reliable with high throughput

• Inter-stage wireless link for launchers

Challenge of stages connectivity without LOS

APP

Other higher

layers

MAC

PHY

IR-UWB technology overview

Other standard or

IEEE 802.15.4

specification

- Alternative PHY of IEEE 802.15.4
 - Low power, low rate wireless PAN (LR-WPAN)
 - Covering PHY and MAC layer

- Low power, low energy emission (-41dB/MHz)
- High data rate (up to 27 Mbps) 6.8Mbps
- Lower vulnerability to interference (other systems or jamming)

IR-UWB Key aspects

Pulse based modulation

Honeywell

UWB Symbol – 2 information bits

World-wide available frequency bands

Comparison of wireless candidates I

	Wi-Fi	ZigBee	Bluetooth	IR-UWB	WiMedia
Frequency band (GHz)	2.4, 5	2.4	2.4	subGHz, 3-10	3.1-10.6
Channel Bandwidth (MHz)	20, 22, 40	5	1	499.2, 1081, 1331	528
Range (m)	100-200	10-100	10-100	10-100	4-10
Data rate (Mbps)	2, 11, 54, 600	Up to 0.25	Up to 24	Up to 27.24	Up to 1024
Modulation	DSSS, OFDM, MIMO	O-QPSK, BPSK	pi/4-DQPSK	PBM-BPSK	MB-OFDM
Power emission	< 20dBm	< -3dBm	< 20dBm	< -41 dBm/MHz	< -41 dBm/MHz

Comparison of wireless candidates II

Reliability and determinism

• ... satisfied by appropriate protocol stack

- Standard vs. proprietary solution
- Standardized candidates (from industry automation)
 - ISA100.11a

Honeywell

- WirelessHART
- Other standard or – In progress specification
 - IEEE802.15.4e + TiSCH
 - AVSI standardization activity for aerospace

APP
Other higher layers
MAC
PHY

IR-UWB

ISA100.11a

- Scalable and flexible network
- Determinism using TDMA
- Reliability given by centralized management and redundancy
- Industrial proven solution
- In-house implementation OneWireless wireless system for automation and control

Demonstrator Design Concept

 Adaptation of ISA100.11a compliant network with IR-UWB PHY layer
Network

Demonstrator SW design

Honeywell

Summary of ISA100.11a modifications

- New PHY definition (ISA100.11a considers currently only 2.4GHz)
 - Channel management
 - Power setting
 - Integrated MAC functionalities
- Without frequency hopping
- Without encryption on
 - Data link layer
 - Transport layer
- Timeslot duration shortened

Demonstrator HW Design

Tests and measurements

Honeywell

Hi-Fi Testing – Venus Express Mock-up

18 Document control number

Satellite Mock-up Measurement I

• Intra-cavity

Satellite Mock-up Measurement II

Satellite Mock-up Measurement III

• Inside-outside

Honeywell

Satellite mock-up measurement IV

Onboard sensor network use case (PER = <0 - 1.55E-4>)

Measurement - summary

- Measurement campaign showed feasibility of IR-UWB for all use cases from the connectivity perspective
 - Best inter-cavity PER achieved 9.75E-6
 - Open space environment is different due to reflections
- Open or closed doors have little impact (AIT)
- TX power can be reduced to -54.5 dBm/MHz (77.27 dB μ V/m)
- Lower throughput offers higher robustness and reliability
- Maximal distance: 9.5 m from satellite
- Narrow band interference has little impact
- Chip antenna offers good performance

UWB demonstrator summary

- IR-UWB is robust against narrow band interference and multipath environment and offers higher performance than narrow band systems
 - Measurement on satellite mock-up proved usability in relevant obstructive environment
- ISA100.11a is extendable with new PHY
- ISA100.11a offers reliable protocol stack for deterministic communication in complex network systems
 - High scalability and modularity vs. complexity and efficiency
- ISA100.11a specifies strictly user applications (interoperability)
 - Inflexible application layer

⇒ IR-UWB offers promising solution for space wireless communication
⇒ Higher layers of protocol stack can be designed for higher efficiency

Future Work

- Coexistence EMC tests
- HW design

- Space-graded components (RF chip!!)
- Reduce form factor
- Power supply (battery, harvesting, power subsystem)
- SW design
 - Link management for UWB PHY
 - Protocol stack optimization adjustment for space use case
- Integration to satellite platform/test system

Thank you

www.honeywell.com

