
© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

1

Spazio IT

IXV OBSW

Source Code

STATIC ANALYSIS

December 2014

IXV OBSW –

Source Code Static Analysis

Maurizio Martignano

Spazio IT – Soluzioni Informatiche s.a.s

Via Manzoni 40

46030 San Giorgio di Mantova, Mantova

http://www.spazioit.com

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

2

Agenda

 IXV OBSW and Spazio IT Code Quality Platform

 Bounded Model Checking and Abstract Intepretation
(a proposed methodology)

 Analyses results

 Processes

 Spazio IT Code Quality Platforms @ AIRBUS Helicopters

 Future Work

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

3

IXV OBSW and

Spazio IT Code Quality Platform

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

4

IXV OBSW and

Spazio IT Code Quality Platform

 Spazio IT was requested to perform an activity of V&V on
the entire IXV OVSW.

 To this purpose Spazio IT integrated the open source code
quality platform SonarQube (http://www.sonarqube.org)
with the following tools:

– CppCheck (http://cppcheck.sourceforge.net/) - open
source – a C/C++ static analyser

– PC-Lint (http://www.gimpel.com/) – proprietary - a
rich pattern matching source code static analyzer
(mostly used for MISRA C 2004 compliancy checks)

December 2014

http://www.sonarqube.org/
http://cppcheck.sourceforge.net/
http://www.gimpel.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

5

IXV OBSW and

Spazio IT Code Quality Platform

 Spazio IT also integrated the following tools to see if they
were applicable to the IXV OBSW and could provide
additional information:

– CBMC (http://www.cprover.org/cbmc/) – open
source – a C prover based on bounded model checking

– Frama-C (http://frama-c.com/) – open source – a
framework for the static analysis of C code – especially
its “value analysis” (i.e. abstract interpretation) and
“weakest precondition calculus” plugins.

December 2014

http://www.cprover.org/cbmc/
http://frama-c.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

6

SonarQube

December 204

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

7

SonarQube – What is it?

 SonarQube is an open source Web Application
(http://www.sonarqube.org) which

– Takes in input a set of source code files and a set of
analyses results (produced by external tools).

– Stores both sources and results in a database.

– Makes available the gathered information via a
dynamic website where the results are shown in the
context of the code itself.

December 204

http://www.sonarqube.org/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

8

SonarQube – What is it?

December 204

Source Code

Files

SonarQube

Database

SonarQube

Engine

Analyses

Results

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

9

SonarQube / Plugins / Sensors

December 204

SonarQube

Plugin-M
e.g. Java

Plugin-I
e.g. C/C++

Plugin-1
e.g. Ada

Sensor-J
e.g. PC-Lint

Sensor-M
e.g. GCOV

Sensor-1
eg. CppCheck

Post-Processing
e.g. CPD, Decorators

Pre-Processing
e.g. scanning

and parsing

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

10

SonarQube – There’s more

 Analyses on the same code base can be performed at
different moments in time and SonarQube keeps track of
the changes/evolution.

 The problems found during analyses (a.k.a. issues) can be
managed directly from within the system itself, e.g.

– Identifying false positives

– Assigning issues to developers

– Checking their status (if they have been solved)

– …

December 204

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

11

SonarQube - Screenshots

December 2014

http://sonarsrv.spazioit.com/

http://sonarsrv.spazioit.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

12

SonarQube - Screenshots

December 2014

http://sonarsrv.spazioit.com/

http://sonarsrv.spazioit.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

13

SonarQube - Screenshots

December 2014

http://sonarsrv.spazioit.com/

http://sonarsrv.spazioit.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

14

SonarQube - Screenshots

December 2014

http://sonarsrv.spazioit.com/

http://sonarsrv.spazioit.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

15

CppCheck

 “Cppcheck is a static analysis tool for C/C++ code

 Unlike C/C++ compilers and many other analysis tools it
does not detect syntax errors in the code.

 Cppcheck primarily detects the types of bugs that the
compilers normally do not detect (from CppCheck
website http://cppcheck.sourceforge.net/)”

December 2014

http://cppcheck.sourceforge.net/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

16

CppCheck

 CppCheck produces messages belonging to 6 different categories:

1. “Error - used when bugs are found

2. Warning - suggestions about defensive programming to
prevent bugs

3. Style - stylistic issues related to code clean-up (unused
functions, redundant code, “constness”, and such)

4. Portability - portability warnings. 64-bit portability. code
might work different on different compilers. etc.

5. Performance - suggestions for making the code faster. These
suggestions are only based on common knowledge.

6. Information - informational messages about checking
problems.”

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

17

CppCheck

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

18

PC-Lint

 PC-Lint (http://www.gimpel.com) is a static analyzer
deriving from the old Unix utility “lint”.

 It supports many checks:
– Barr Group's Top 10 Bug-Killing Rules

(http://www.barrgroup.com/webinars/10rules)

– Dan Saks (http://www.dansaks.com/)

– Scott Meyers C++ books

• (More) Effective C++ - edition 1992

• (More) Effective C++ - edition 1996

• (More) Effective C++ - edition 1996

December 2014

http://www.gimpel.com/
http://www.barrgroup.com/webinars/10rules
http://www.dansaks.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

19

PC-Lint

– MISRA (http://www.misra.org.uk/)

• Latest MISRA C (TM)

• MISRA C 1998 (TM)

• MISRA C 2004 (TM)

• MISRA C 2012 (TM)

• MISRA C++ 2008

• MISRA C++ 2008 using 9000 level messages

– Barr’s / Netrino Embedded C Coding Standard
(http://www.netrino.com/taxonomy/term/3)

– Porting from 32-bit to 64-bit

• from 32-bit to LP64 model

• from 32-bit to LLP64 model

• from 32-bit to ILP64 model

December 2014

http://www.misra.org.uk/
http://www.netrino.com/taxonomy/term/3

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

20

PC-Lint

 In order to “reduce the noise”, it needs a very careful
setup / initial configuration (e.g.)

– the proper memory model

– the C/C++ include files (libraries)

– the behaviour of standard macros and pragmas like
“assert”, “pragma pack”,

– the set of active checks

– …

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

21

PC-Lint

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

22

CBMC

 “CBMC is a Bounded Model Checker for C and C++
programs. It supports C89, C99, most of C11 and most
compiler extensions provided by GCC and Visual Studio.
(…)

 It allows verifying array bounds (buffer overflows),
pointer safety, exceptions and user-specified asser-
tions.(..).

 The verification is performed by unwinding the loops in
the program and passing the resulting equation to a
decision procedure. (http://www.cprover.org/cbmc/)”

December 2014

http://www.cprover.org/cbmc/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

23

CBMC

 CBMC first converts a C program into a model, some kind of
“symbolic executable”.

 Then the “symbolic executable” is “executed” and the
execution generates “decision conditions” (about some
property being true or false) that are expressed as CNF
formulae.

 Finally these formulae are passed to an external SAT solver
for their evaluation and verification
(http://www.dwheeler.com/essays/minisat-user-
guide.html).

December 2014

http://www.dwheeler.com/essays/minisat-user-guide.html

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

24

Frama-C

 Frama-C (http://frama-c.com/), like SonarQube, rather
than being a specific tool, is “is an extensible and
collaborative platform dedicated to source-code analysis
of C software.”

 Frama-C relies on CIL (C Intermediate Language) to
generate an abstract syntax tree. The abstract syntax tree
supports annotations written in ANSI/ISO C Specification
Language (ACSL).

December 2014

http://frama-c.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

25

Frama-C

 Like SonarQube also Frama-C has its own Plugins. Spazio
IT has used two Frama-C Plugins:

1. Value analysis (http://frama-c.com/value.html) -
which computes a value or a set of possible values for
each variable in a program. This plugin uses abstract
interpretation techniques and many other plugins
make use of its results.

2. WP (Weakest Precondition - http://frama-
c.com/wp.html) - to verify properties in a deductive
manner

December 2014

http://frama-c.com/value.html
http://frama-c.com/wp.html

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

26

Methodology

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

27

Basic Core

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

28

Basic Core

 Identify which checks need to be executed on the code, i.e.

– for the compiler, which compiler warnings (possibly all
of them) need to be verified;

– for CppCheck, which type pf messages (errors,
warnings, performance messages, and so on) need to
be verified

– for PC-Lint, which rule sets have to be used (e.g.
MISRA C 2004), and for each rule set, which actual
rules make sense and need to be verified

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

29

Basic Core

 Configure carefully the tools (in terms of tools options,
selected memory model – e.g. LP64 vs. LLP64, location of
the sources, location of the include files, and so on…

 Tune/optimize the configuration identified in point 1 by
running few analysis sessions to verify that the proper
information is generated (and disable the production of
useless, noisy outputs – this may require the development
of some filtering scripts).

 Run the analyses whenever it makes sense in the lifetime
of a project (or during operations), and possibly on a
regular basis.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

30

Basic Core

 At every run the code:

– should compile;

– should compile without generating any of the selected
warning;

– should pass CppCheck analyses without generating
any of the selected messages;

– should pass PC-Lint analyses without violating any of
the selected rules/guidelines.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

31

Basic Core

 Gerard J. Holzmann , “Mars Code”, Communications of
the ACM, Vol. 57 No. 2, Pages 64-73,
10.1145/2560217.2560218
(http://cacm.acm.org/magazines/2014/2/171689-mars-
code/fulltext)

December 2014

http://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

32

Bounded Model Checking

Abstract Interpretation

December 2014

When looking carefully

into the magic ball…

what we eventually

see…

is us. 

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

33

Bounded Model Checking

Abstract Interpretation

 CBMC and Frama-C Plugins (Value Analysis and WP)
organize their computation into two phases:

– Generation of a model of the code under analysis

– “Symbolic execution” or “logic verification” of the model
itself.

 The computation resources required by phase one grow in a
polynomial way with the complexity of code under analysis
(number of files, packages, classes, functions, parameters,
variables, lines of code, loops, constructs and so o…)

 The computation resources required by phase two grow
exponentially with the complexity of the code under of
analysis.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

34

Bounded Model Checking

Abstract Interpretation

 So, for not so small, real code bases

– either we stick to phase one

– or we split the system under analysis into reasonable,
«manageable» chunks.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

35

Infinite Loops

 Never ending loop

#include <stdio.h>

int main() {

int i = 0;

int n = 10;

for (i = 0; i < n; i++) {

printf("Iteration #% 2d.\n", i + 1);

if (i == 5) i = 0;

}

return 0;

}

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

36

Infinite Loops

 CBMC reaction (phase one)
…

Unwinding loop c::main.0 iteration 1205 file loops.c line 7

function main thread 0

Unwinding loop c::main.0 iteration 1206 file loops.c line 7

function main thread 0

Unwinding loop c::main.0 iteration 1207 file loops.c line 7

function main thread 0

Unwinding loop c::main.0 iteration 1208 file loops.c line 7

function main thread 0

Unwinding loop c::main.0 iteration 1209 file loops.c line 7

function main thread 0

…

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

37

Infinite Loops

 Frama-C reaction (phase two)
…

[value] Done for function printf

[value] computing for function printf <- main.

Called from loops.c:8.

[value] Done for function printf

[value] computing for function printf <- main.

Called from loops.c:8.

[value] Done for function printf

[value] Recording results for main

[value] done for function main

[value] ====== VALUES COMPUTED ======

[value] Values at end of function main:

NON TERMINATING FUNCTION

…

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

38

Infinite Loops

 Both CBMC and Frama-C would detect this
#include <stdio.h>

int main() {

int i = 0;

int n = 10;

// int *pn = &n;

int *pn;

for (i = 0; i < (*pn); i++) {

printf("Iteration #% 2d.\n", i + 1);

}

return 0;

}

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

39

Loops Checking and

Cyclic Tasks

 If a CBMC analysis is conducted on a set of files using as
entry point a given function (say ‘foo’) and the analysis
finishes without having to limit neither the “unwinding”
nor the “depth”, then also the function ‘foo’ finishes, as
well as any other function that is called by ‘foo’ (both
directly or indirectly) and that belongs to the code under
analysis.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

40

Loops Checking and

Cyclic Tasks

 Analysing the IXV OBSW it is possible to see that every
cyclic task (cyclic thread) in the system is characterised by
three functions:

1. XXX_Init – initialise the data required by the task

2. XXX_StartThread – start the thread

3. XXX_Cycle – this is the function that gets called at
every cycle.

 So, if the CBMC analyses of all the XXX_Cycle functions
finish, then (at least in the cyclic tasks) there is no never-
ending loop. And this is what was proved.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

41

Manageable Chunks

 Acting locally (at function level)  Identifying
Manageable Chunks

 Acting locally:

– pointer checks

– memory leak checks

– signed/unsigned overflow

– float overflow

– …

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

42

Manageable Chunks

December 2014

UPERL

Scripts SonarQube

DB

Analysis

Results

*.xml

SED/AWK

Manual Editing

PC-Lint

Sensor

(not a dedicated

sensor yet)

Sources

Shell Scripts

CBMC

or

Frama-C

Analysis

Results

*.txt

SCITOOLS

Understand

Project

UDB

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

43

Manageable Chunks

 The output produced by CBMC and Frama-C is similar to
the one produced by static analysers based on pattern
matching (like PC-Lint), similar but not the same, rather
complementary.

 Frama-C Value Analysis Plugin did not bring interesting
results when used at local level, at function level.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

44

Some Few Results Examples

December 2014

IXV

OBSW

(made «generic»)

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

45

Some Few Results Examples

 Uninitialized Variables

– Compiler (gcc, clang, Visual Studio)

– PC-Lint

 Array Index out of bounds

– PC-Lint in all code bases but only in simple cases

– CBMC and Frama-C in all possible cases but in small
portions of code

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

46

Some Few Results Examples

 Constant Value Boolean Expression (MISRA C 2004 Rule
13.7)

void foo(unsigned int arg) {

…

if (arg < 0) {

printf(“Error: input parameter can only be a positive

integer\n”);

return;

}

…

if (arg > UINT_MAX) …

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

47

Some Few Results Examples

case SListIdx:

tablePtr = &itPtr->sets;

if (tablePtr != NULL) {

if (arg > UINT_MAX) …

– PC-Lint

 Combining Signing and Unsigned Integers
(MISRA C 2004 Rules 10.1, 10.3, 10.4)

– PC-Lint

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

48

Some Few Results Examples

 Implicit integer type conversion (and promotion) (MISRA
C 2004 10.1, 10.3, 10.4, 10.6, 10.7, 10.8)

– PC-Lint

 Floating point comparison (MISRA C 2004 Rule
13.3)

double a;

double b;

if (a == b) …

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

49

Some Few Results Examples

bool_t My_DoubleEquals (double64_t first, double64_t second)

{

bool_t isEqual = FALSE;

double64_t difference = My_AbsValue(first - second);

if (difference >= T_EPSILON)

{

isEqual = FALSE;

}

else

{

isEqual = TRUE;

}

return isEqual;

}

– PC-Lint

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

50

Some Few Results Examples

 Problems with pointers
#include <stdio.h>

/* Why is this wrong? */

int main(void) {

int x, *p;

x = 10;

*p = x;

printf("*p = %d.\n", *p);

return 0;

}

– PC-Lint

– CBMC / Frama-C

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

51

Some Few Results Examples

 Divisions by Zero / Overflows

– PC-Lint

– CBMC / Frama-C

– Traps 

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

52

Processes

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

53

Who does what?

 All nowadays Integrated Development Environments
(IDEs) like GNAT GPS 2014, Visual Studio 2013, Eclipse
Luna, offer some form of Code Analysis.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

54

Who does what?

 IDE’s analysis tools are to be used by software developers
during their everyday work.

 SonarQube analyses are more for the «quality people»
and they are not supposed to be executed everyday, but
rather at specific /well defined moments in the software
development life cycle.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

55

When?

 SonarQube analyses should be performed after any
«significant» delivery in a software development project,
e.g. using ECSS 40 terminology, at:
– CDR

– QR

– AR

 In maintenance projects SonarQube analyses should be
performed after any «significant» new delivery, e.g.
supposing a versioning like:
major.minor[.build[.revision]]
After every «minor» delivery.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

56

AIRBUS Helicopters

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

57

AIRBUS Helicopters

 Since mid 2012 Spazio IT has been working for AIRBUS
Helicopters and has developed an Ada Plugin supporting
both:

– Adacore GNAT (http://www.adacore.com)

– Atego APEX Ada (http://www.atego.com)

compilation tools chains

 Spazio IT platform has been adopted by the group
maintaining the software of the NH90 and Tiger
helicopters.

December 2014

http://www.adacore.com/
http://www.atego.com/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

58

Ada vs. C/C++

December 2014

Ada C/C++

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

59

Ada vs. C/C++

 The majority if not all the problems mentioned earlier
would never occur if Ada is used.

 In safety critical applications, the additional costs deriving
by the adoption of Ada are partly compensated by the
savings gained when performing Verification &
Validation activities.

 What is the added value of using a code quality platform
like the one developed by Spazio IT in the case of Ada?

 The answer is: METRICS.
December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

60

Ada vs. C/C++

 Metrics like the lines of code, the % of comments, the
cyclomatic complexity, the nesting and so on… are all
correlated somehow to the readability and maintainability
of the code.

 Being able to “see” these metrics in the context of the code
allows developers and maintainers to immediately
identify “host-spots”, that is portions of code requiring
attention.

 On top of that, the “time-machine” of SonarQube allows
checking the evolution of these “hot-spots” with time.

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

61

Ada vs C/C++: origins and

explanations

Ottobre 2013

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

62

Future Work

December 2014

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

63

Future Work

 Continuous Integration
– Analyses should be run in an automatic way (e.g. via integration

with systems like Jenkins - http://jenkins-ci.org/)

 More research on Abstract Interpretation
– E.g. Clang Static Analyzer (http://clang-analyzer.llvm.org/ a

working example is available at
http://sonarsrv.spazioit.com:8181/) vs. MathWorks Polyspace
(http://www.mathworks.com/products/polyspace/)

 Education
– C Awareness Campaign

 Code Quality Competence Centre
– Training, Services, Platforms

December 2014

http://jenkins-ci.org/
http://clang-analyzer.llvm.org/
http://sonarsrv.spazioit.com:8181/
http://www.mathworks.com/products/polyspace/

© 2014 Spazio IT - Soluzioni Informatiche s.a.s.

64

Thank you for your time!

December 2014

Software

Spazio IT

