

SRL

CNES initiative for satellite compliant with French Space Operations Act

Arnaud VARINOIS, Denis DILHAN, Julien ANNALORO

Overview of the needs Modeling **Passivation Fragmentation Orbit Changes Controled Reentry Semi-controled reentry**

Overview

• « LOS » authority is verifying conformity

With certified tools

STELA: 25 years limit

DEBRISK: Fragmentation and demisability

ELECTRA: Casualty risk assessment in controlled or uncontrolled reentry

These tools are available for free

Issues

cnes

- Reentry Behaviour is not well known
- Safety in stake so need for conservative approach

◆ Satellites en vol ■En projet

cnes

Passivation

- High in flight experience in CNES
 - Spot/Helios, TDF/TC2, Mini/Micro (more than 10 satellites passivated)
- Several R&T and development ongoing (see next slides)
- Now well known until satellite switch off
 - Tank depressurization
 - Battery depletion
- But long terme behaviour not well known
 - Thermal behaviour after 20 years in orbit ???
 - Tank pressure in long term

1% liquid hydrazin remaining after passivation can lead to more than 30 bars pressure due to vaporization/decomposition

Roadmap

cnes

Elecrical Passivation

Long term: New PCDU development embedding SA short or open circuit Short term: additionnal specific equipement or low cost HW/SW strategy (NOP OBSW + bypass)

Fluidic passivation

Long lifetime pyro valves Micro peforator (see next slide)

No issue identified

5

Cnes

Passivation R&T activities : Contact : denis.dilhan@cnes,fr

Demonstration of the performances of an Off the Shelf cable cutter :

TRL5 demonstrated : Verification of the performances on a harness of 12 twisted pairs of AWG 18. Key characteristics :

- Reliability >0,995 @95% confidence
- Lifetime of explosive components demonstrated >20 years at 30° C
- Qualified for a French Air Force programme
- REACH Free energetic materials

Perforator for the passivation of pressurant gases - CNES patent : Development in progress : CDR : Nov, 2015 and Fully Qualified by March 2016

TRL 4 demonstrated : Verification of the performances on ¼ inch pipes (SST e0.9 mm / Ta6V e0.7 mm). Key characteristics :

- Reliability >0,985 @90% confidence
- Lifetime of explosive components already demonstrated : >20 years at 30° C
- Interchangeable with pyrovalves (mechanical & electrical)
- Compatible with HP and LP environment
- REACH Free energetic materials

Fragmentation Analyses

- Aim: Reduce the casualty risk
- Tools

Cnes

- Many tools developped or under development ESA NASA
 - CNES (see next slides) Others
- ✦ Tests to be performed
 - In test set-up in orbit

- Metals are well known (except emissitivity)
- Other materials knowlegde could be improved Composite Glass
 - SiC, Si3N4
- Tests foreseen this year.
- System architectures
 - ◆ D4D
 - Thermites
 - ...

Pressurant tank found in Colorado in March 2011 and tentatively linked to a Zenit launch vehicle stage.

Fragmentation R&Ts

Contact : denis, dilhan@cnes, fr

Objectives :

Facilitate the burning or the ablation of satellite critical structures.

Implementation of the reentry thermal fluxes for the initiation of **passive** explosive system

«SELF FRAGMENTATION» TECHNOLOGY

Linear shaped charges cords and thermal detonators TRL3 : <u>CNES patent</u>

«BURNING ASSISTANCE» TECHNOLOGY

Burning of thermite pellets on Ta6V plates (propellant tank) : **TRL3** : <u>CNES patent</u>

DEBRISK (OBJECT-ORIENTED TOOL) CONTACT : JULIEN.ANNALORO@CNES.FR

PAMPERO (SPACECRAFT-ORIENTED TOOL)

CNES code

cnes

- 6 degrees of freedom model (3 for positions and 3 for attitudes)
 - Local calculation of the pressure coefficients
 - Estimation of the object attitude by the calculation of forces and moments
 - For the considered object, calculation of the entire trajectory from the last orbit
- Local calculation of the parietal heat flux (convective and radiative) by empirical/correlation laws
- Heat transfer modeling by a 3D thermal conduction module
- Preliminary estimate of the local ablation when a mesh reaches the melting temperature

Orbit changes

• GEO

cnes

 All satellites equiped with propulsion Available deltaV: Nx100m/s

Need is limited

~11 m/s

No showstopper

• LEO

 Rough need is to bring perigee down to 500km for uncontrolled reentry 50km for controlled reentry

- Available deltaV depends on design Nanosat: 0m/s (might increase) Microsat: between 0 and 150m/s Others: 100m/s to 200m/s
- Need depends on initial orbit Nx10m/s
- Solutions

Available propellant increase (if any) Solid propulsion kit Drag sail (but limited to few orbits) Tether

ISIS - Coût de réorbitation et de désorbitation

Controled Reentry

cnes

Target area free of population (typically SPOUA)

• Drivers

- Propellant capacity (>150m/s)
- High Thrust (typically 0.04N/kg)
- Reliability (but limited in time)
- ✦ AOCS controlability down to 250km (typically)

Solutions

- Liquid Propulsion system modifications
 Bigger tank
 Power thrusters
- Solid propulsion kit

Duration

Few days/weeks

Semi-Controled Reentry

Cnes

- Target a wider area: typically 3 to 5 orbits Casualty risk divided by 10 !
- Get proper phasing to be out of populated areas
- ✤ With same casualty area, get less casualty risk

• Drivers

- ✦ DeltaV > 150m/s
- Limited thrust: 5^E-5N/kg

Achievable with electrical propulsion

AOCS controlability down to 120km (typicallv)
 Specific strategy under analysis

700

600

500

토 400

100

100 110

ณี ชุ_N 300 200

Eccentricity vector evolution

-0.01

-0.02

0.01

0.02 0.03

Requires satellite symetric geometry

Duration: few monthes

Thank you for your attention <u>Arnaud.varinois@cnes.fr</u> <u>Denis.Dilhan@cnes.fr</u> <u>Julien.annaloro@cnes.fr</u>

Warning, Cleansat is a Registered TradeMark

Anyway,

Conclusion

Let's try to clean space not only saturdays !!!

cnes