End-of-life battery passivation for PROBA platform

Peter Holsters peter.holsters@qinetiq.be

A presentation to: Clean Sat Workshop

18 March 2015

© Copyright QinetiQ Limited 2012

QinetiQ Proprietary

How will we spend the next 20 minutes?

- 1. Introduction to PROBA and current passivation approach
- 2. Spacecraft passivation guidelines and challenges
- **3.** Method for battery passivation
- **4.** Verification to requirements
- **5.** Summary and conclusions

© Copyright QinetiQ Limited 2010

QinetiQ Space nv

1 INTRODUCTION – PROBA heritage

PROBA = PRoject for **O**n-**B**oard **A**utonomy

- In Orbit Demonstration
- Earth Observation
- Sun Observation
- Formation Flying

QinetiQ Space nv

QinetiQ

PROBA-1

1 INTRODUCTION - General PROBA features

- 1. Small, low cost mission
- 2. Maximum automation in flight and ground segment

- 3. Industrial turnkey project including space and ground segment HW and SW, launch and commissioning operations
- 4. Strong focus on AOCS performance
- 5. Design lifetime 5 years

(>99% availability)

QinetiQ Space nv

1 Passivation of current PROBA spacecraft

- 1. Make spacecraft passive at mission end
 - Clear all TC queues
 - Disable all FDIR eg for Tx activation
 - Also valid after reboot
 - All actions both on nom + red side

No possibility for passivation of electrical power sources

QinetiQ Space nv

2 Spacecraft passivation - Guidelines and challenges

- 1. Guideline: ECSS-U-AS-10C (focus on passivation of electrical power sources)
 - On-boards energy sources: "permanently depleted" or "made safe"
 - Reliability of successful disposal: 90%
 - No disconnection
 - Made safe?
 - Afterwards?
- 2. Challenge: how to avoid "the weakest link"?
 - Reliable
 - Controllable
 - Secure

QinetiQ Space nv

2 Spacecraft passivation – impact

- 1. Current power system is designed for robustness
 - No SPF for loss of power bus
 - Power bus control independent from external control (e.g. OBC)
 - Battery EoC control is autonomous and 1-failure tolerant
 - Ultimate charge & discharge protection in HW, independent from any SW
 - Etc

Years of design heritage and FDIR makes it quasi impossible to "kill" the spacecraft.

And we would probably like to keep it that way...

QinetiQ Space nv

3 Battery passivation – protection and features in place

Safe & Arm

relavs

Solar Array

shunt section

.....

Batterv

monitor

* * *

- 1. Protections
 - Overvoltage:
 - Settable EoC
 - Dump if Vbat > EoC
 - Under voltage:
 - HW + SW
 - Essential & non-essential •
- 2. Features
 - EoC level reset boot
 - Patchable SW levels

protected powe SAseparation outputs Li-lor bat bonding prim ary power strap ground ÷

dump

resist

PROBA power system - S3R system - adtonomous

28V battery regulated bus

Battery separation

relays

Safe & Arm

NSO#0

NSO#4

SO#0

SO#1

SO#18

© Copyright QinetiQ Limited 2010

QinetiQ Space nv

3 Battery passivation – proposed method

- 1. Additional steps
 - Design Implement "low" EoC
 - OPS SW patch default is low EoC level
- 2. What after reboot?
 - Depletion
 - Nominal FDIR disables loads & AOCS
 - Stabilise at new EoC level

3 Battery passivation – which EoC level?

- 1. Minimum SoC for battery to be safe?
 - Internal battery protections
 - <10% of total capacity (on-ground storage level)

4 Verification to requirements

- 1. Robustness of original system
 - No SPF disconnecting battery
 - "ARM" barrier; SW patch on nominal & redundant:
- 2. Passivation itself
 - No critical "kill-switch" action;
 - Existing hardware/functionality
 - Controllable (step-by-step) and measurable
 - Protected and secure

QinetiQ Space nv

4 Verification to requirements

- 3. Post passivation: free of SPF
 - Very basic & reliable HW
 - EoC itself is majority voting
- 4. Other
 - Battery thermal control remains
 - Reverting possible

5 Summary and conclusion

- 1. "Simple" method for battery passivation
 - Compatible with existing hardware
 - Needs conscious initiation
 - Process takes several orbits step by step
 - Protection against unintended operation
- 2. Assumes battery SoC (~ 5 10%) is safe
 - Complete depletion if EoC < damage threshold
- 3. First implementation in PROBA-3 spacecraft
- 4. Automation need and method to be assessed

QinetiQ Space nv

Thank you !

QinetiQ Space nv

www.QinetiQ.be

