Design considerations when selecting lowparticle content solid propellants for deorbiting applications

Space Debris Mitigation and CleanSat Workshop ESA/ESTEC, Noordwijk, 17-18 March 2015

Onno Verberne cj.verberne@nammo.com Thomas Deschner thomas.deschner@nammo.com

Missile Products Division, Nammo Raufoss AS, Norway

© Nammo Raufoss AS

Where there is smoke...

FUTURE

Where there is smoke...

R

FUTURE

... is smoke the same as particles?

- Primary smoke
 - Mixture of liquid and solid <u>particles</u> in the exhaust gas
 - Generated from the combustion of specific ingredients in the propellant
 - Metal based aluminum, iron, lead, copper, boron
 - Soot (carbon)

- Secondary smoke
 - Condensation of water and gaseous combustion products under specific atmospheric conditions of low temperature and high humidity
 - e.g. hydrochloric acid (HCl) generated from combustion of ammonium perchlorate (AP)
 - Similar to condensation trails from airplanes

- <u>Particles</u>
 - Generated from the ablation and erosion products of the insulation and TVC
 - Ejected objects from ignition system, environmental seal, TVC, etc.

Few examples of a solid motor being fired in space

Difference between aluminized and nonaluminized propellant

SECURING THE FUTURE

"Design considerations when selecting lowparticle content solid propellants for deorbiting applications"

- Depends on more than the propellant alone:
- Propellant constituents
- Insulation design and materials
 - Ignition system
 - Environmental seal
 - → Thrust Vectoring unit

Propellant design considerations

- Aspects of the design of the de-orbiting solid rocket motor influenced by (or influencing the choice of) the propellant
 - Isp (vacuum)
 - Expansion ratio of the nozzle
 - Thrust level
 - Delivered total impulse
 - # of particles
 - TVC design
 - TVC related losses
 - S/C Integration
 - Total mass
 - Cost
 - Etc.

Arbitrary grouping for illustration purposes

Considerations WRT de-orbiting application

Nammo

UTURE

Considerations WRT de-orbiting application

Arbitrary grouping for illustration purposes

Even if a low particle content solid propellant already is chosen:

- Low erosion nozzle (with or without TVC) & burst disc not ejecting fragments
- Insulation material with combustible fibres and low solid content
- Maintain stable combustion

Competition between $I_{sp,\,vac}$, available mass/space and optimum efficiency. Higher pressure and temperature increases $I_{sp,\,vac}$, but requires a larger nozzle contour demanding more space and increasing mass, while at the same time the efficiency of an end mounted TVC solution will be reduced

Competition between $I_{sp, vac}$ and slow burn rate. High $I_{sp, vac}$ leads to a high burning rate. Burn rate also depends in a high degree on the operating conditions. Long burn times require the right choice of insulation, nozzle and motor case materials (erosion & thermal stress).

Mass could increase caused by the long burn times and the low density propellant (no metals) \rightarrow increased thermal stress influence motor case wall thickness and insulation design as well as requiring a heat and erosion resistant nozzle.

Techniques to optimize propellant formulation for de-orbiting applications

- Remove metal based fuel constituents
- Remove metal based additives
- Use high energy, energetic ingredients with only gaseous combustions products
- Use ablative materials with combustible fibers
- Use ceramic based insulation materials

Nammo excellent positioned to provide Solid Propellant solution to the de-orbiting system

- One of the world's largest databases on composite propellant formulations for a multitude of applications
- Many years of research and development on Clean and Minimum Smoke propellants
- In-house design and manufacturing of ceramic composite insulation components
- Recent investment in the expansion of the propellant plant for Clean Propellants (e.g. Nitramines based)

Nammo

Unique wide-ranging experience in solving the challenge of "finding" the right compromise

- Aluminized and non-aluminized
- High burn-rate and low burn-rate
- Short burn time and long burn-times
- Propellant masses from 3kg-120kg

New developments in Clean Propellants

- Investments in new production plant for Energetic Propellants
- State of the Art Glycidyl Azide Polymer (GAP, Energetic Polymer) with HMX (RDX) Solids and selected additives industrialized in 2014
 - Minimum smoke class AA
 - Excellent structural and ballistic properties
 - Excellent ageing characteristics (18 years predicted)
 - Low sensitivity, passed all UN tests
- Technology based on 20 years experience with energetic polymers and novel oxidizers
 - GSTP 1, WEAG and Euclid
- Recent Improvements obtained based on energetic plasticizers, neutral bonding agents and readily available oxidizers
 - HMX and RDX instead of HNF, ADN and CL20

New Generation Minimum Smoke (no particles) Solid Rocket Propellant industrialized by Nammo

C-C/SiC Manufacturing Line In-house manufacturing of critical components

- Ceramic Composites for rocket motors
 - Series production of Jet Vanes (>4000)
 - Development of new TVC concepts
 - Development of new nozzles concepts and low erosion nozzle inserts

Conclusion

- Selecting low-particle content solid propellants for de-orbiting applications cannot be isolated from the motor design
- Sub-optimization can cost significant performance at system level
- Achieving low-particle emissions while maintaining performance depends on more parameters than the propellant alone:
 - Propellant constituents
 - Insulation design and materials
 - Ignition system
 - Environmental seal
 - Thrust Vectoring unit
- New propellants (and insulation materials) are ready to be introduced but need flight opportunities to demonstrate long term properties

