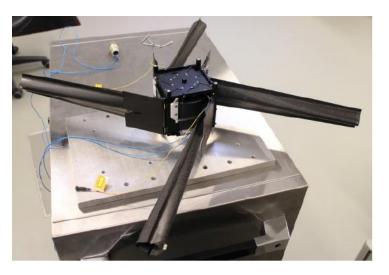
ADEO - Architectural Design and Testing of De-orbiting Subsystem

CleanSat Workshop 17.-18.03.2015 ESA ESTEC

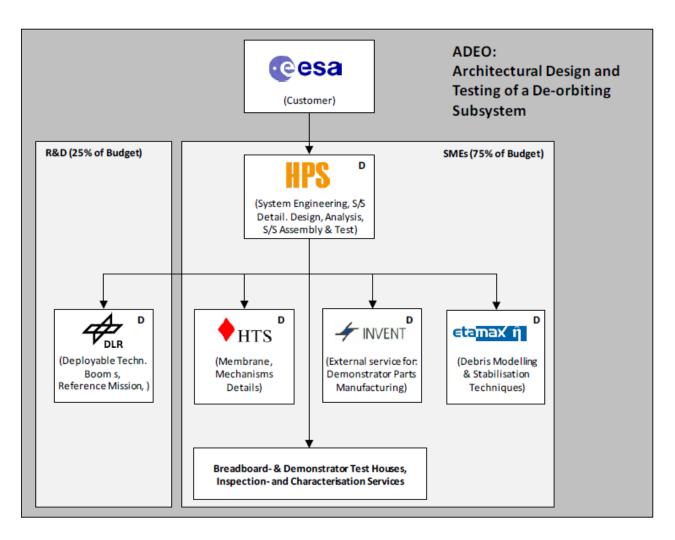
Dr. Lars Tiedemann

Noordwijk | March 17th 2015


Motivation and rationale

Deliberate de-orbiting is one measure to reduce the debris in Earth's orbits, so that future missions are not subject to higher debris impact risks.

One way to do so is the use of thrusters to decelerate the satellites. The other way is a large sail or parachute that makes use of the residual atmospheric gas and its affecting drag at LEO.



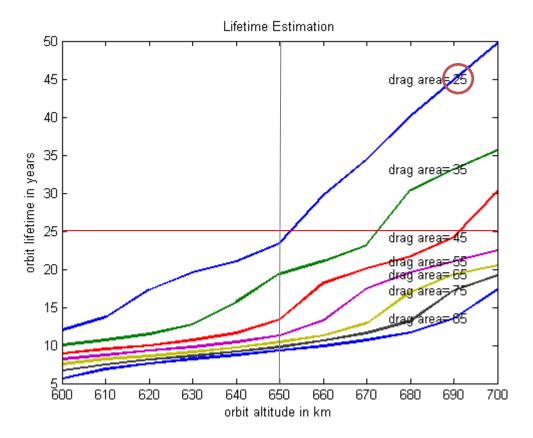
Artist impression of space debris in LEO, source ESA

DeOrbit Sail boom deployment module, source DLR

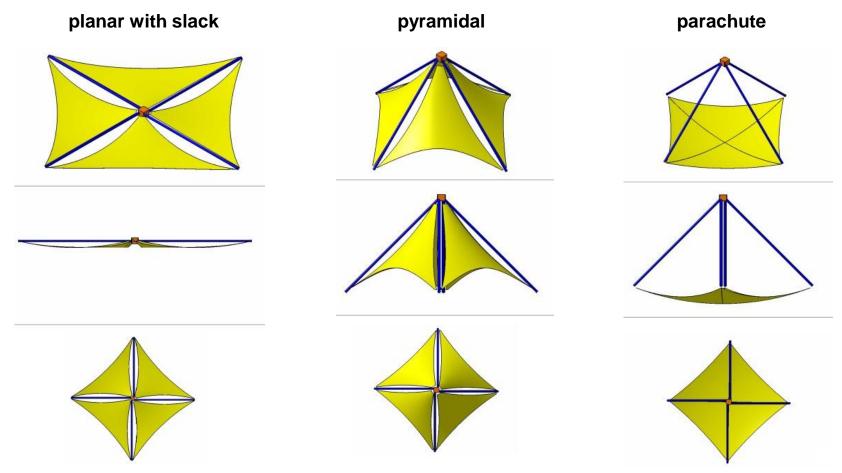
The ADEO team

Key requirements

GERMANY


• Boom+membrane drag sail

High Performance Space Structure Systems GmbH


- VEGA launcher
- Orbit lifetime <25yrs
- Subsystem shall be
- ultra-light weight
- scalable
- generic
- passively stabilized

Preliminary De-orbiting Analysis

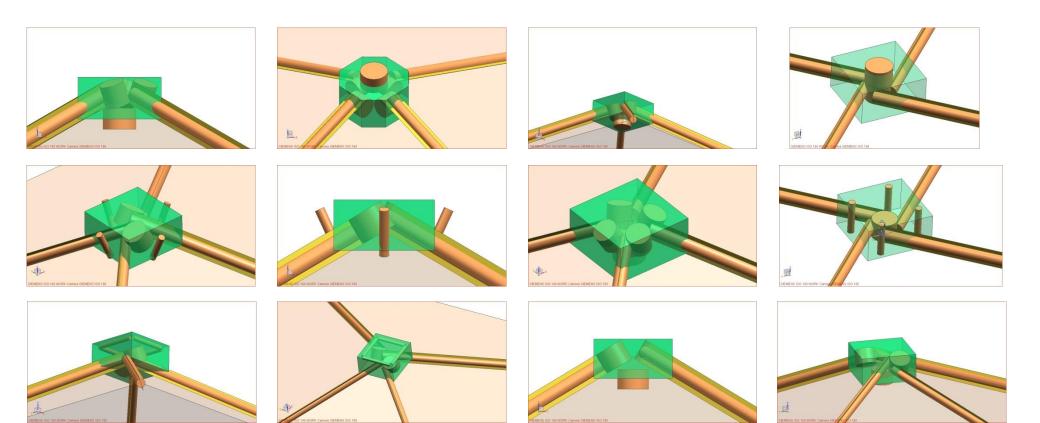
- 1000kg satellite
- 2014 start solar activity
- >700km solar pressure is dominant
- Top Requirement: De-orbiting within max. 25yrs
- ightarrow 650km orbit altitude
- \rightarrow 25m² drag area

Initial Concepts

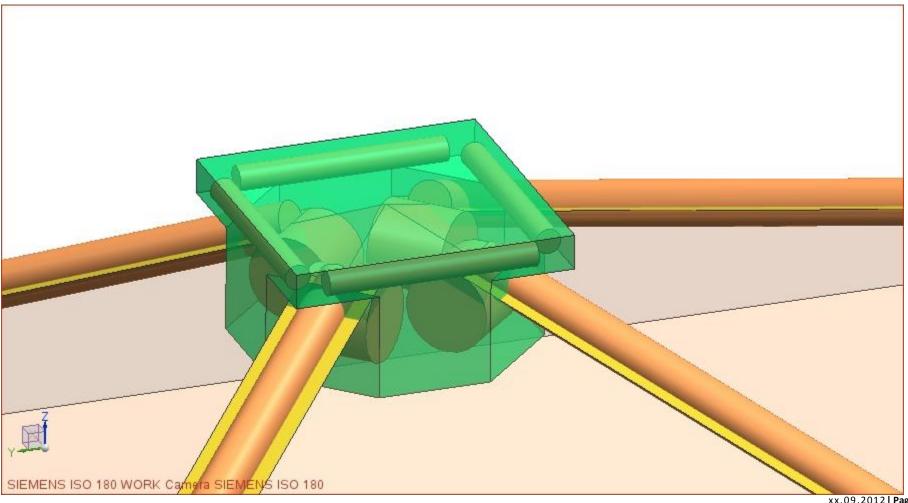
Concept Evaluation

Demonstern	Weighing	D. 4-lla	Configuration 1		Configuration 2	Configuration 3			
Parameter	Factor	Details	Description	Mark	Description	Mark	Description	Mark	
	10	mechanism	one motor needed	5	several motors or gearing needed	3	several motors or gearing needed	3	
Mass	5 boom shortest booms		5	longer booms	4	longer booms			
	5	membrane	lowest membrane area	5	highest membrane area	4	small membrane area	5	
Required stowed volume	7	see mass	see mass	5	see mass	3	see mass	3	
Stability	10		lowest torque	3	highest torque	5	medium torque	4	
Boom loading (load type)	8	deployment is design driver	mainly axial compression	5	combination of bending and axial compression	3	combination of bending and axial compression	2	
Daliahilita	8	impact risk	small area, short booms	5	large area, long booms	4	small membrane area, long booms	4,5	
Reliability	6 boom/membrane I/F failure several interfaces per segment		5	several interfaces per segment	5	four interfaces for sail	2,5		
Complexity	10	packaging/ deployment	short booms and small sail area but 4 chambers for sail parts needed	5	large booms and big sail area and 4 chambers needed	5	large booms but small sail area with less interfaces and just one sail	4	
Spacecraft interface	10	free/undisturbed volume	needs free volume close to S/C external surface	2	needs free surface close to Subsystem	5	needs free surface close to Subsystem	5	
Heritage in consortium	5		high	5	medium	4	low	2	
Total				370		347		303	

CEF Workshop in Bremen 7.-8.1.2015



Subsystem Configuration Selection Morphological Box


						Α	В	С	D	E	F	G	Н		J	К	L	М
No of Booms	1	2	3	4		1	1	2	2	2	4	4	4	4	4	4	4	4
No of Belt-Spools	1	2	3	4		1	1	1	2	2	4	4	4	4	4	4	4	4
Boom Orientation	Vertical	Horizontal				V	V	V	V	V	V	V	V	V	Н	Н	Н	V
No of Sail Spools	1	2	3	4		1	4	1	4	4	1	1	4	4	1	1	4	4
Sail Orientation	Vertical	Angled	Horizontal			V	V	V	Н	Α	V	V	Н	Α	V	V	Н	Α
No of levels	1	2	3			2	1	2	2	1	1	2	2	1	1	2	2	2
					No spools	2	2	3	6	6	5	5	8	8	5	5	8	8
					Adapt.	-	-	0	0	0	0	0	0	0	+	+	+	0
					Safe Depl.	+	+	0	-	+	0	0	-	+	0	0	-	+
					Volume	+	+	+	+	0	-	0	0	-	-	0	0	-

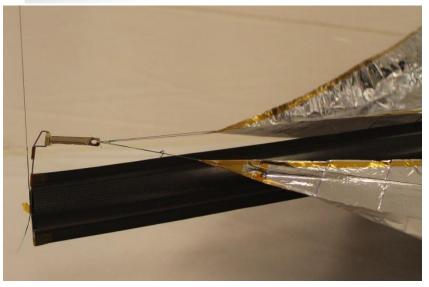
Subsystem Configurations

Selected Concept

Boom concept

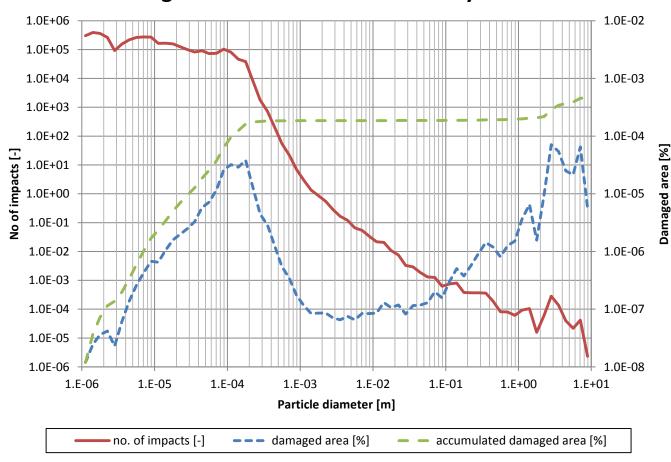
CFRP boom

Double-omega shape


Flattened profile stowed on coil

CFRP boom cross section, source: DLR

Stowed CFRP boom deployed from coil, source: DLR



Example of boom – membrane interface, source: DLR

Preliminary damage assessment with MASTER 2009

damage assessment for 25m² sail 25yrs in orbit

Likelihood	No. of	Particle				
	impacts	diameter [m]				
≤0.01%	≤1e-4	≥6e-1				
(minimum)						
≤0.1%	≤1e-3	≥8e-2				
(low)						
≤1%	≤1e-2	≥2e-2				
(medium)						
≤10%	≤1e-1	≥5e-3				
(high)						
>10%	>1e-1	<5e-3				
(maximum)						

- → Impacts in the order of cm size cannot be neglected
- → The area loss is created by small debris <Ø0.2mm</p>
- \rightarrow Total area loss is negligible

Next Steps

- Requirements for the selected concept
- Preliminary subsystem design
- Boom anlaysis and design
- Membrane analysis and design
- Mechanism analysis and design
- Breadboard test plan

Test programme

- Breadboard tests
- Verification of demonstrator model
 - Deployment test
 - Vibration test
 - Thermal balance
 - Thermal cycling
 - Vacuum deployment test

HIGH PERFORMANCE COMPONENTS AND SUBSYSTEMS

Reflectors

Thank you for your attention.

Satellite

Structures

Launcher and Re-entry Components

HPS GmbH Hofmannstr. 25-27 81379 München www.hps-gmbh.com

High Performance Space Structure Systems GmbH GERMANY MLI

INVENT GmbH Christian-Pommer-Str. 34 38112 Braunschweig www.invent-gmbh.de

Radiators

HPS Lda. Rua Roberto Frias 378 4200-465 Porto www.hps-lda.pt

Antennas

High Performance Structures Gestão e Engenharia Lda. PORTUGAL

Deployable Structures