State of the art concepts and verification strategies for passive de-orbiting systems using deployable booms and membranes

17th of March 2015

Patric Seefeldt (Membrane Design/Qualification), Maciej Sznajder (Degradation) German Aerospace Center (DLR), Institute of Space Systems

Martin Hillebrandt, Sebastian Meyer (Deployable Booms) DLR Institute of Composite Structures and Adaptive Systems
Content

- Space Debris and Drag Augmentation Introduction

- What can we learn from precursor projects?
 - Applications for Deployable Membranes
 - Membrane Stowing
 - Membrane Design Aspects
 - Materials and Space Environment
 - Deployable Booms

- Gossamer Structures Verification Strategies
Space Debris and Drag Augmentation

• Sharp increase due to Chinese anti-satellite missile test in 2007 and a collision of two satellites (Iridium33 and Kosmos2251) in 2009
• Envisat orbiting at 790km altitude brings a risk of a new collision
• Deorbiting strategies are required, (one) solution is drag augmentation

⇒ ESA’s Deployable Membrane and ADEO Projects, will be presented in the upcoming presentations
Space Debris and Drag Augmentation

- Deorbiting strategies are required, (one) solution is drag augmentation

\[a_D = \frac{1}{2} \rho v^2 \cdot \frac{C_D A}{m} \]

- Heavy satellites require large drag area respectively sails
- Strongly depend on the orbit, especially the altitude. Atmospheric density decreases exponentially with the altitude.
- Strongly depend on sun activity due to its influence on the atmospheric density
- In high orbits where drag forces are comparable to other disturbances like solar radiation pressure the dynamic behavior of the satellite is important
Applications for Deployable Membranes

- In former projects and missions lightweight deployable membrane technology was developed for
 - Drag Sails (mainly CubeSats)
 - Solar Sailing
 - Ultra lightweight solar photovoltaic generators
 - Membrane Antenna
 - Sun Shielding
Transferable Design Aspects for Drag Sails

• Drag Sail Projects (mainly CubeSats)
 ➢ Stowing and deployment strategies (scalability from CubeSats is difficult)
 ➢ Materials
 ➢ Membrane design

• Solar Sailing
 ➢ Stowing and deployment strategies
 ➢ Materials
 ➢ Membrane design

• Ultra lightweight solar photovoltaic generators
 ➢ Protective coatings

• Membrane Antenna
 ➢ Load introduction, surface accuracy
Membrane Stowing

- Two-dimensional folding of membranes
 - Miura-Ori pattern

- Two-dimensional wrapping of membranes
 - Hub-tangential folding lines (Oswald, Huso, Lanford)
 - Sheel’s fold pattern, Leaf-in pattern (Butterfly Folding)
 - Leaf-out pattern

- One-dimensional folding of sail segments
 - First dimension
 - Second Dimension
Membrane Design Aspects

Shape Stabilisation
- Booms
- Spin
 - Inflatable
- Circular
- Rectangular

Geometry
- Sectioning
 - Triangular

Load Transmission
- Multiple Points
 - Continuous
 - Stripped
 - Rigging

Joining Techniques
- Adhesive Bonding
- Sewing
 - Riveting
 - Welding

Layout
 - Singlelayer
 - Multi-layer
 - Coatings
Membrane Design Aspects

- Shape Stabilisation
- Geometry
- Load Transmission
- Joining Techniques
- Layout

Legend:
- sail suspension from boom
- sail surface edge
- axis / arrow direction
- boom

- Four-point suspension.
- Five-point suspension.
- Separate quadrants.
- Continuous connection.
- Stripped architecture.
Materials

• Most projects considered coated polyimide films (Kapton or Upilex) due to good mechanical behavior and thermal resistance

• Vacuum Deposited Aluminum (VDA) on polyimide is a standard product and was chosen in many former projects. Additional protective and thermo-optical coatings were considered especially for photovoltaics (SiO_2) and are used for various MLI materials.

 • Coatings are required as protection against space environment and for thermal design

 • Coatings need to be robust in order to stow the membranes
Space Environment in Low Earth Orbits (200 .. ~700 km)

- High concentration of Atomic Oxygen
 - Generated by solar radiation of wavelength of about 243 nm,
 - Impact energy of 5 eV
- High energetic EMR radiation
 - Bond braking e.g. C-C, C-O
 (especially hazard to polyimide films)
- Flux of solar p+/e- is negligible small comparing to the AO flux.

Experiments (e.g. MISSE) performed under real space conditions
 - Large literature database of many degraded materials.

Preliminary material selection and characterization
Coating Examples

• VDA (standard polyimide film coating):
 - Unreactive to AO exposure
 - Limited shielding of the substrate from Ultra Violet radiation
 - VUV may ionize Al. atoms => charging
 - High α/ε ratio => High Temperatures

• SiO2:
 - Good AO resistivity (not 100%), thick coatings for long durations
 - Good shielding of the substrate from Ultra Violet radiation
 - High electrical resistance => Spacecraft charging
 - Decreases α/ε ratio => Lower Temperatures

• TiO2:
 - Good AO resistivity but less than SiO2, thin TiO2 coatings crack during AO exposure, thick coatings for long durations
 - Very Good shielding of the substrate from Ultra Violet radiation
 - Prevent ESD
 - Decreases α/ε ratio => Lower Temperatures
Deployable Boom Technologies

Strain Energy
- Flexible structures
- Stowage by elastic material deformation
- Deployment by stored strain energy

Inflatable
- Thin walled, highly deformable shells
- Stowage by shell folding
- Deployment by inflation gas
- Rigidization may be necessary

Articulated
- Rigid structural members
- Stowage by use of hinges
- Deployment by additional mechanism

Telescopic
- Segmented rigid shell structure
- Stowage by use of telescopic segments
- Deployment by additional mechanism

Courtesy of University of Surrey

Courtesy of ATK/ABLE Engineering

Courtesy of Northrop Grumman
Strain Energy Deployment

- Thin-walled **shell booms** or **trusses with flexible members**
- Deformation of the structure within the **elastic region of the material**
- **Maximum elastic strain** limits shell/rod thickness
- Deployment by **stored strain energy**
- Deployment may require support and control by additional mechanism

Four loner on deployable CoilABLE truss (Courtesy of ATK/ABLE Engineering)

Bi-stable CFRP-booms (Courtesy of RolaTube)

Deployed De-Orbit Sail drag sail using DLRS CFRP boom technology
Inflatable Structures

- **Tubular structures** made of **laminated foils** or thin walled **composites allowing plastic deformation** (thermoplastic or uncured resins)
- Stowage by **membrane-like folding** of the structure
- Gas-tight tubular structure allows **deployment by inflation**
- **Rigidization mechanism** required to maintain structural stability after venting of the inflation gas
Articulated Structures

- **Trusses or linkages** with rigid structural members connected by hinges
- **Deployment by springs** at the hinges or **additional mechanisms** like motor driven cable/pulley systems
- **Latches may be required** to lock hinges in deployed state

dragNET de-orbit system using pantograph type deployable booms for support of the sails (Courtesy of MMA Design)

Telescopic Structures

- Segmented, telescopic structure made of rigid elements with mainly tubular cross-section
- Linear deployment driven by additional mechanism

Telescopic composite mast deployed by an internal metal STEM boom
(Courtesy of Northrop Grumman)
Boom Evaluation Criteria

- **Boom evaluation criteria for de-orbiting applications:**
 - Stowage Volume, Mass (including deployment mechanisms), Structural performance (stiffness, strength), Scalability, Long term stowage capability, Complexity, MMOD resistance, Thermal characteristics, Material degradation

- **Evaluation of entire boom categories is necessarily defective** as properties among representatives of the same category may vary strongly.
 - Therefore, **individual evaluation of boom concepts is necessary**.

<table>
<thead>
<tr>
<th>Criteria Sub-Criteria</th>
<th>Weighing Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Case Bending</td>
<td>7</td>
</tr>
<tr>
<td>Bending Strength</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Load Case Compression</td>
<td>7</td>
</tr>
<tr>
<td>Axial Strength</td>
<td>4</td>
</tr>
<tr>
<td>(Slenderness Ratio >80)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Load Case Stowage</td>
<td>8</td>
</tr>
<tr>
<td>Stowage Volume</td>
<td>5</td>
</tr>
<tr>
<td>Mass (including deployment mechanisms)</td>
<td>4</td>
</tr>
<tr>
<td>Structural performance (stiffness, strength)</td>
<td>4</td>
</tr>
<tr>
<td>Scalability</td>
<td>3</td>
</tr>
<tr>
<td>Long term stowage capability</td>
<td>4</td>
</tr>
<tr>
<td>Complexity</td>
<td>3</td>
</tr>
<tr>
<td>MMOD resistance</td>
<td>2</td>
</tr>
<tr>
<td>Thermal characteristics</td>
<td>2</td>
</tr>
<tr>
<td>Material degradation</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-Criteria</th>
<th>Weighing Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces (Tip deployment)</td>
<td>6</td>
</tr>
<tr>
<td>Tip</td>
<td>4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2</td>
</tr>
<tr>
<td>Robustness</td>
<td>1</td>
</tr>
<tr>
<td>Controlability of deployment process during deployment</td>
<td>3</td>
</tr>
<tr>
<td>Load carrying capability during deployment</td>
<td>2</td>
</tr>
<tr>
<td>Max. transmittable Deployment Force from boom to sail</td>
<td>1</td>
</tr>
<tr>
<td>Mass (including mechanism)</td>
<td>5</td>
</tr>
<tr>
<td>Creep (Composite only)</td>
<td>7</td>
</tr>
<tr>
<td>System Complexity (including mechanism)</td>
<td>5</td>
</tr>
<tr>
<td>Scalability (down and up)</td>
<td>8</td>
</tr>
<tr>
<td>MMOD robustness deployed</td>
<td>7</td>
</tr>
<tr>
<td>MMOD robustness stowed</td>
<td>7</td>
</tr>
<tr>
<td>TRL(1-9)</td>
<td>6</td>
</tr>
<tr>
<td>Development risk within the ADEO Consortium</td>
<td>10</td>
</tr>
<tr>
<td>Manufacturing capabilities within the ADEO Consortium</td>
<td>10</td>
</tr>
<tr>
<td>Costs</td>
<td>8</td>
</tr>
<tr>
<td>Intellectual Properties Rights</td>
<td>5</td>
</tr>
<tr>
<td>ITAR</td>
<td>5</td>
</tr>
</tbody>
</table>

SUM
- 613
- 463
- 436
- 487
- 444
- 377
- 378
- 500
- 474
- 464
DLR’s Development of Deployable Membrane Spacecraft Structures

- Design
- Structural Analysis
- Thermal Analysis
- Manufacturing
- Shaker Tests
- Centrifuge Test
- Fast Decompression
- Deployment Test

- Degradation (e⁻, p⁺, EMR)
Membrane Verification on the example of DLR’s Gossamer-1 project

- Shaker
- Centrifuge
- Fast Decompression
- Deployment
Verification – Shaker

- **Sine**

<table>
<thead>
<tr>
<th>Axis</th>
<th>Frequency</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y</td>
<td>2 - 6 Hz</td>
<td>23 mm (0 to peak)</td>
</tr>
<tr>
<td></td>
<td>6 - 100 Hz</td>
<td>2.5 g</td>
</tr>
<tr>
<td>Z</td>
<td>2 - 6 Hz</td>
<td>23 mm (0 to peak)</td>
</tr>
<tr>
<td></td>
<td>6 - 100 Hz</td>
<td>3.5 g</td>
</tr>
</tbody>
</table>

- **Random**

<table>
<thead>
<tr>
<th>Axis</th>
<th>Peak Frequency</th>
<th>Peak Level</th>
<th>Overall level [g<sub>rms</sub>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>100 Hz</td>
<td>7 g<sup>2</sup>/Hz</td>
<td>19.89</td>
</tr>
<tr>
<td></td>
<td>120 Hz</td>
<td>7 g<sup>2</sup>/Hz</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>100 Hz</td>
<td>10 g<sup>2</sup>/Hz</td>
<td>23.89</td>
</tr>
<tr>
<td></td>
<td>130 Hz</td>
<td>10 g<sup>2</sup>/Hz</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>190 Hz</td>
<td>7 g<sup>2</sup>/Hz</td>
<td>28.53</td>
</tr>
<tr>
<td></td>
<td>215 Hz</td>
<td>7 g<sup>2</sup>/Hz</td>
<td></td>
</tr>
</tbody>
</table>

duration | 2 min per axis
Verification - Centrifuge

- All axes tested with 30g
- It is difficult to test vibration and static loads at the same time in a laboratory environment
 => Centrifuge testing with very high g-levels
- 2σ standard deviation of the maximum vibration accelerations were covered (83.29g)
Verification - Fast Decompression

- Venting 99% of the air within the first 75 seconds
- Test was consistent to our reference launch of a Steel2.1 rocket, providing time-altitude correlations
- Employing atmosphere model NRLMSISE-00 and ideal gas law the pressure was calculated
Verification – Laboratory deployment test

- Final laboratory deployment testing, including measurement of deployment forces
Verification – Further Aspects

- Microscope investigations, package verification (e.g. coatings)
- Degradation experiments (e.g. VUV and ATOX)
- Boom characterization (e.g. Stiffness, creeping)
-
Summary

- State of the art review in the field of
 - Drag Sails, Solar Sails, Thin-film Photovoltaics, Membrane Antenna, Sun Shielding
 - Summary membrane stowing strategies
 - Summary membrane design aspects
 - Space Environment in LEO and impact on Materials
 - Exemplarily three different coatings were presented (Al, SiO2, TiO2)

- Membrane Verification
 - Qualification testing on the example of DLR’s Gossamer-1 Project
 - Shaker, Centrifuge, Fast Decompression and laboratory Deployment
Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

[75] “E-st-20-06c.”

Bibliography

[86] G. Technical University in Dresden, “Atomic oxygen exposure facility,” 2014. Atomic Oxygen Exposure Facility, https :\slash\slash tu - dresden.de\die_tu_dresden\fakultaeten\fakultaet_maschinenwesen\ilr\rfs\forschung\lab\ausstattung\en.

Bibliography

