

ESA Requirements on EOL De-orbit

Technical Day on De-orbit Strategies ESTEC, Noordwijk, 17th March 2015

Prepared by: Independent Safety Office (TEC-QI)

European Space Agency

ESA Space Debris Mitigation Policy and Requirements

ISO 24113

Space Debris Mitigation

Requirements

15/05/2011

ESA/ADMIN/IPOL(2014)2

Space Debris Mitigation Policy for Agency Projects

28/03/2014

ECSS-U-AS-10C

Adoption Notice of ISO 24113:

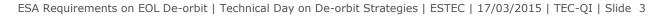
Space Debris Mitigation

Requirements 10/02/2012

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 2

European Space Agency

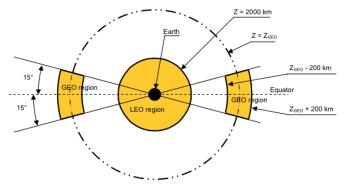
ESA UNCLASSIFIED – For Official Use


Ref. TEC-QI/15-228

ESSB-HB-U-002 ESA Space Debris Mitigation Compliance Verification Guidelines

- ESSB-HB-U-002 ESA Space Debris Mitigation Compliance Verification Guidelines has been issued in Feb-2015.
- ESSB-HB-U-002 is an handbook providing guidelines on the verification of the ESA Space Debris Mitigation requirements.
- ESSB-HB-U-002 was prepared by ESA Space Debris Mitigation Working Group.
- ESSB-HB-U-002 will be regularly updated based on the feedback from ESA and Industry users and the outcome of on-going studies (e.g. in the frame of the Clean Space Initiative).

ESA UNCLASSIFIED – For Official Use	eesa
	estec
	European Space Research and Technology Centre Kepleitaan 1 2201 AZ Noordwijk The Netherlands
DOCUMENT	T +31 (0)71 565 6565 F +31 (0)71 555 6040 www.esa.int
DOCOMENT	
ESA Space Debris Mitigation (Guidelines	Compliance Verification
Prepared by ESA Space Debris Mitigation WG Reference ESSB-HB-U-002	
Issue 1 Revision 0 Date of Issue 19 February 2015 Status Approved	
Document Type HB Distribution ESA	
	European Space Agency Agence spatiale européenne


European Space Agency

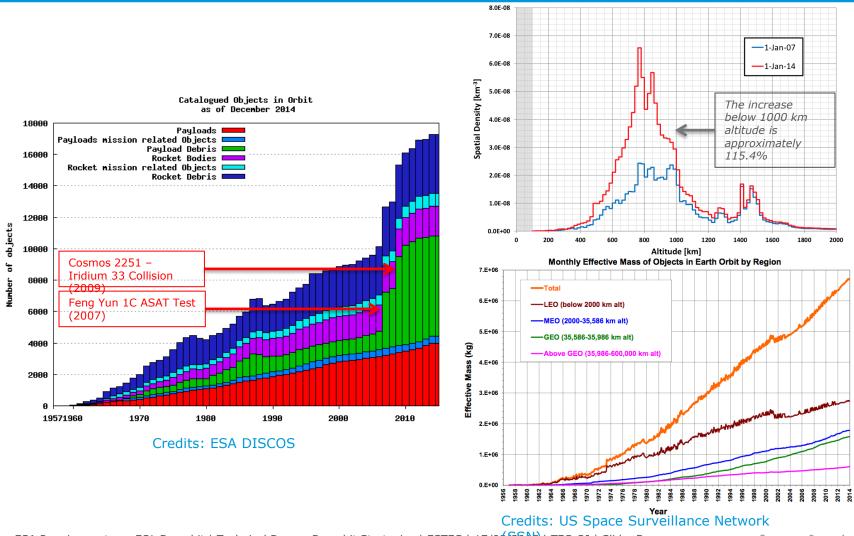
Protected Regions

1. LEO Protected Region

Low Earth Orbit Protected Region is a shell that extends from the surface of a spherical Earth with an equatorial radius of 6,378 km up to an altitude (Z) of 2000 km

2. GEO Protected Region

Geosynchronous Protected Region is a segment of a spherical shell defined by:

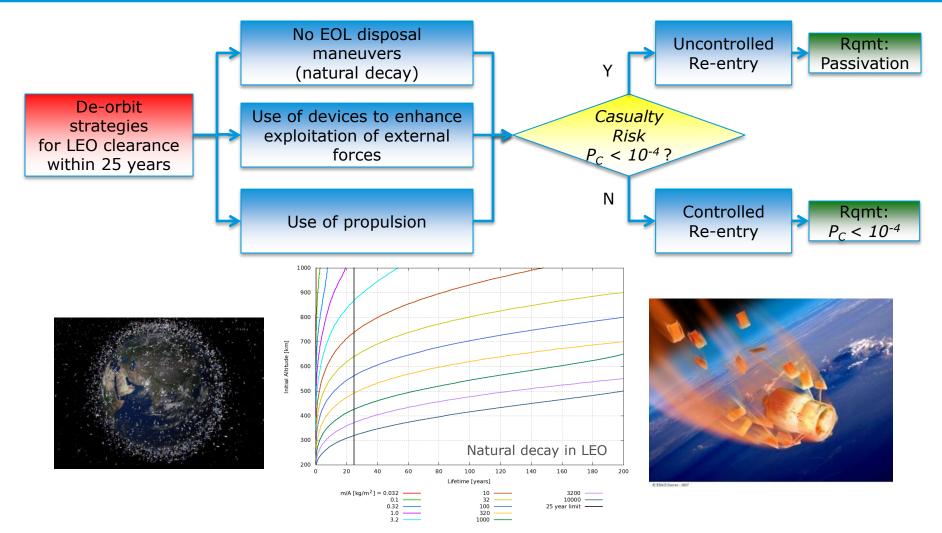

- lower altitude boundary = geostationary altitude minus 200 km
- upper altitude boundary = geostationary altitude plus 200 km
- latitude sector: 15 deg South \leq latitude \leq 15 deg North
- geostationary altitude (ZGEO) = 35,786 km (with respect to the spherical Earth with an equatorial radius of 6,378 km)

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 4

European Space Agency

Space Debris Population

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/0 (2016) | TEC-QI | Slide 5


European Space Agency

ESA UNCLASSIFIED – For Official Use

Ref. TEC-QI/15-228

EOL De-orbit Strategies

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 6

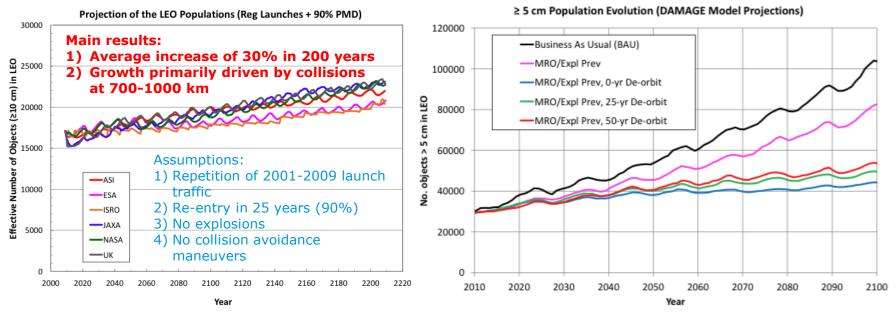
European Space Agency

LEO Clearance and Disposal Maneuvers

Requirement 6.3.3.1: LEO clearance

 Presence in the LEO Protected Region limited to maximum of 25 years from the end of mission

Requirement 6.3.3.2: LEO disposal maneuvers (possible options)


- **Retrieving** and performing a controlled re-entry to recover it safely on the Earth
- Manoeuvring in a controlled manner into a targeted re-entry with a welldefined impact footprint
- **Manoeuvring** in a controlled manner to an orbit with a **shorter orbital lifetime**
- Augmenting orbital decay by deploying a device
- Allowing its orbit to **decay naturally**
- Manoeuvring in a controlled manner to an orbit with a perigee altitude sufficiently above the LEO Protected Region for at least 100 years

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 7

LEO Clearance Rationale

- Presence in LEO limited to max 25 years to mitigate debris population growth over next 100 years as compromise between:
 - Reduction of debris generation risk due to in-orbit collisions and break-ups
 - Cost burden for implementation of de-orbit capability (e.g. propellant mass allocation)

Credits: IADC, 2014

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 8

European Space Agency

ESA UNCLASSIFIED – For Official Use

Ref. TEC-QI/15-228

EOL Disposal Reliability

Requirement 6.3.1.1: disposal reliability threshold

Probability of successful disposal > 0.9 at the time disposal is executed

Requirement 6.3.1.2: disposal reliability assessment

 Probability of successful disposal as conditional probability weighted on the mission success, i.e. P(D|M)

Requirement 6.3.1.3: disposal reliability constraints

- Start and end of the disposal phase chosen so that all disposal actions are completed within a period of time that ensures P(D|M) > 0.9
- The assessment of the EOL disposal reliability should include:
 - EOL disposal reliability assessment during the development phase
 - EOL disposal reliability in-orbit assessment

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 9

European Space Agency

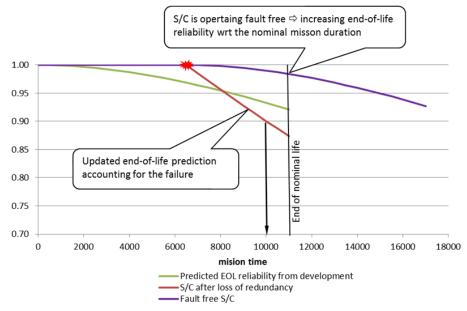
EOL Disposal Reliability Assessment during the Development Phase

$$P(D|M) = \frac{R_{Mission+Disposal}}{R_{Mission}} \ge 0.9$$

P(D|M)conditional probability to have successful disposal assumed the successful mission $R_{Mission}$ mission reliability, i.e. the probability to perform successfully the mission $R_{Mission+Disposal}$ mission and disposal reliability, i.e. the probability to accomplish successfully both
the mission and the disposal

$R_{Mission}$ and $R_{Mission+Disposal}$ need to take into account:

- System reliability for disposal operations
- Resources availability for disposal operations
- Probability of internal explosion leading to structural break-up and preventing disposal operations
- Probability of collision with other objects likely to cause break-up and preventing disposal operations
- $R_{Mission} = 1$ in case mission reliability is not defined or available


ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 10

European Space Agency

EOL Disposal Reliability In-orbit Assessment

- Reliability predictions cannot cover systematic or random hazardous faults prior to launch
- Monitoring equipment performance is needed for decision-making on advanced or extended termination of nominal mission
- The health of a space system can be monitored to identify unanticipated degradation
- Care should be taken on anomalies potentially affecting multiple equipment parts and lowering the effectiveness of redundancies

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 11

European Space Agency

Other SDM Requirements to Preserve LEO

Requirement 6.1.1.2: mission-related objects on-orbit presence

- MROs outside the GEO Protected Region
- MROs presence in the LEO Protected Region limited to a maximum of 25 years after release

Requirement 6.1.2.1: pyrotechnic particle release

To avoid the release of products > 1 mm from pyrotechnic devices

Requirement 6.1.2.3: solid rocket motors particle release in LEO

To avoid release of solid combustion products in the LEO Protected Region

Requirement 6.2.2.1: break-up probability threshold

Probability of accidental break-up < 10⁻³ until its end of life

Requirement 6.2.2.3: passivation

 During the disposal phase, permanently depletion or making safe all remaining on-board sources of stored energy in a controlled sequence

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 12

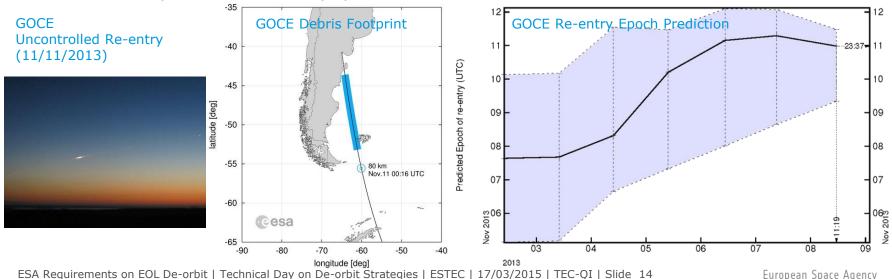
European Space Agency

Re-entry Casualty Risk

Requirement 6.3.4.1: re-entry casualty risk acceptance

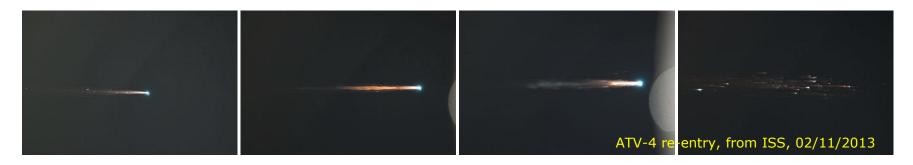
 Maximum acceptable casualty risk set in accordance with norms issued by approving agents

→ ESA/ADMIN/IPOL(2014)2


- a) For ESA Space Systems for which the System Requirements Review has already been kicked off at the time of entry into force of this Instruction (28/03/2014), casualty risk minimisation shall be implemented on a best effort basis and documented in the Space Debris Mitigation Report.
- b) For ESA Space Systems for which the System Requirements Review has not yet been kicked off at the time of entry into force of this Instruction (28/03/2014), the casualty risk shall not exceed 1 in 10000 for any reentry event (controlled or uncontrolled). If the predicted casualty risk for an uncontrolled re-entry exceeds this value, an uncontrolled re-entry is not allowed and a targeted controlled re-entry shall be performed in order not to exceed a risk level of 1 in 10000.

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 13

Uncontrolled Re-entry


- The time of re-entry is not controlled
 - The re-entry epoch can be usually predicted with an uncertainty of about 20% of the time between the prediction and the expected re-entry event
- The ground zone of impact is not controlled
- Physical characteristics (mass, size, material) of on-ground surviving fragments are predictable
- The casualty risk for human population is estimable

Controlled Re-entry

- The time of re-entry is controlled
- The ground zone of impact is controlled
- De-orbit maneuvers are executed to control the re-entry
- The Declared Re-entry Area (DRA) is determinable
- The Safety Re-entry Area (SRA) is determinable
- The main break-up event may be driven by targeting a specific perigee altitude for the last de-orbit maneuver
- The casualty risk for human population is estimable and can be widely minimized by targeting the debris impact over unpopulated areas

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 15

European Space Agency

Re-entry Casualty Area

• Fragment casualty area

equivalent impact area leading a casualty if a person is struck by a piece of fragment (conventionally kinetic energy \geq 15 J)

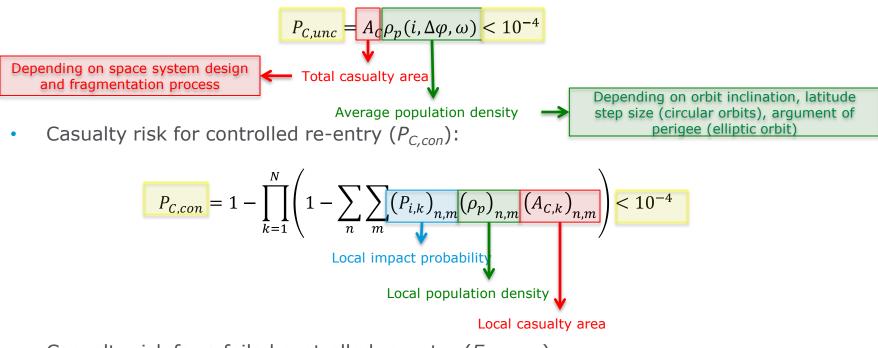
$$A_{C,k} = \left[\sqrt{A_{i,k}} + \sqrt{A_h}\right]^2$$

- A_i average projected area of the fragment surviving the re-entry
- A_h human cross-section, conventionally equal to 0.36 m² (NASA NSS 1740.14)

Total casualty area

sum of N surviving fragments

$$A_C = \sum_{i=1}^N A_{C,k}$$


ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 16

European Space Agency

Re-entry Casualty Risk

• Casualty risk for uncontrolled re-entry $(P_{C,unc})$:

Casualty risk for a failed controlled re-entry ($E_{C,con,fail}$):

$$\frac{P_{C,unc,fail}}{P_{C,unc}P_{f}} = A_{C}\rho_{p}(i,\varphi,\Delta\varphi)P_{f} < 10^{-4}$$

Failure probability

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 17

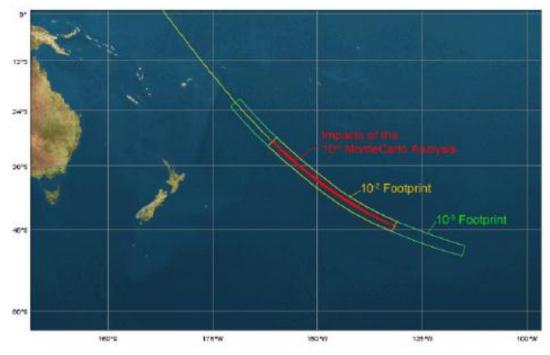
European Space Agency

ESA UNCLASSIFIED – For Official Use

Ref. TEC-QI/15-228

Declared Re-entry Area (DRA) and Safety Re-entry Area (SRA)

Declared Re-entry Area (DRA):

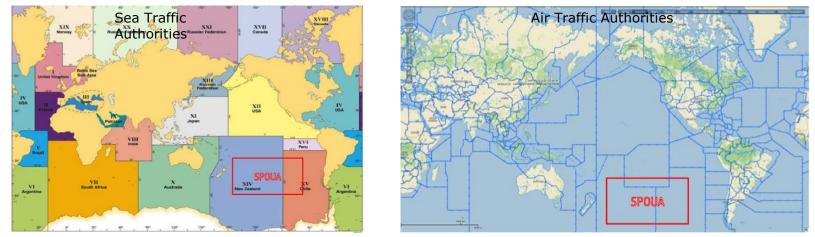

area on-ground where the reentry debris are enclosed with a probability of 99% given the delivery accuracy

 \rightarrow 10⁻² footprint

Safety Re-entry Area (SRA):

area on-ground where the reentry debris are enclosed with a probability of 99.999% given the delivery accuracy

 \rightarrow 10⁻⁵ footprint


ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 18

European Space Agency

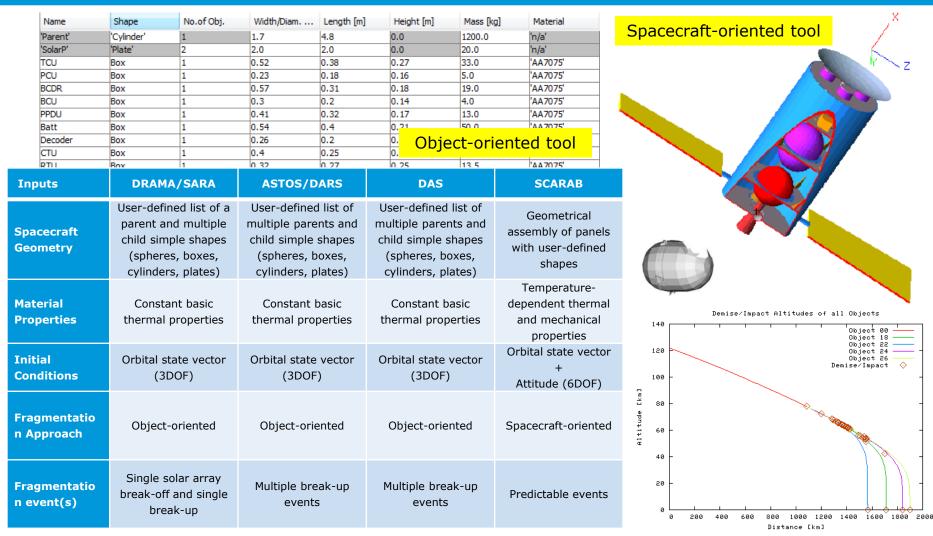
Criteria for Target Impact Area Selection for Controlled Re-entries

- 1. The impact area should be ensured over an ocean area, with sufficient clearance of landmasses and traffic routes
- 2. Territorial waters, i.e. 12 nm (22.2 km) from coastline, are considered to be part of of national territories
- 3. The sovereign state should be informed in case of interference with its Economic Exclusive Zone (EZZ), i.e. 200 nm (370.4 km) from coastline
- 4. The South Pacific Ocean Uninhabited Area (SPOUA) has been identified as the largest unpopulated area to target the ATVs controlled re-entries (longitude range from 185 deg East to 275 deg East, latitude range from 29 deg South to 60 deg South)
- 5. Preserving zones classified as Marine Protected Areas for environment safeguard can be a constraint to take into account

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 19

European Space Agency

ATV Controlled Re-entry


ATV controlled re-entry mission (Credits: ATV-CC / CNES)

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 20

European Space Agency

Re-entry Casualty Risk Tools

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 21

European Space Agency

Questions?

ESA Requirements on EOL De-orbit | Technical Day on De-orbit Strategies | ESTEC | 17/03/2015 | TEC-QI | Slide 22

European Space Agency