MICRO-PARTICLE IMPACT DETECTION BY PLASMA EFFECTS

ESA contract 4000107623/13/NL/AF

ESTEC, Noordwijk, 7 May 2015

Martin Schimmerohn

MICRO-PARTICLE IMPACT DETECTION BY PLASMA EFFECTS

Content

- Fraunhofer EMI's Spacecraft Technology Group
- Motivation
- Modelling
- Analysis
- Conclusions

Fraunhofer EMI's Spacecraft Technology Group Field of research

Fraunhofer EMI

Study the dynamic behaviour of materials and structures under crash, impact and shock loads

Spacecraft Technology Group

Experimental and numerical analysis of hypervelocity impact effects

- Space system shielding
- Component failure investigation
- Vulnerability analysis tools
- Asteroid impact research
- Fragmentation analysis

Fraunhofer EMI's Spacecraft Technology Group Background on impact plasma

Investigation of impact plasma induced discharges on solar arrays

Measurement of impact plasma characteristics

🜌 Fraunhofer

Motivation Impact plasma

5

Motivation Impact detection by plasma effects (1/2)

Scientific charge detectors

$$Q = K \cdot m^{\alpha} \cdot v^{\beta}$$

Cosmic Dust Analyzer, Cassini-Huygens

6

Stübig (2012)

Motivation Impact detection by plasma effects (2/2)

Noise signals on plasma wave experiments

🗾 Fraunhofer

Motivation Study objectives and tasks

Study objective:

Assess the feasibility of, and the requirements for, being able to derive reliable quantitative information on the properties of microparticles (e.g. mass, velocity) with wave experiments.

Tasks:

- 1) Develop model for plasma generated by impact
- 2) Perform simulations to assess sensor response
- 3) Derive sensor requirements and outline roadmap

Modeling Approach

- 1) Plasma generation
- Characteristics of plasma cloud during expansion
- Signal response of antenna interacting with plasma cloud

eesa

Modeling Plasma formation regimes

1) Thermal volume ionization (*v*_{imp} > 10-20 km/s)

- Dissociation and ionization of shocked material
- Nominal model for this study based on approach by Drapatz & Michel (1974) and Hornung (1981, 2000)

2) Surface ionization (*v*_{imp} < 10-20 km/s)

- Different qualitative but no quantitative models available
- Study approach: Initial value problem using volume ionization model and empirical charge yield equations as boundary condition

Modeling **Plasma generation – shock state**

- Semi-empirical model by Sugita et al. (2012) applied
- Specific heat most important modeling parameter

eesa

Modeling **Plasma generation – specific heat**

- Tares dissipation of internal energy in temperature and entropy
- Electrons have high influence under extreme compressions
- Electron excitation processes act like endotherm reactions
 - Thomas-Fermi approach for free electron gas

Modeling

Plasma generation – vaporization

- Isentropic decompression from shock state ($S_H = S_{qas}$)
- Entropy determines fraction of vaporized material of a finite volume shocked to a certain pressure

Modeling

Plasma generation – gas cloud formation

- Simplified geometric model of pressure contour with semiempirical pressure decay law
- Mixing of vapors and averaging of states

eesa

Modeling Plasma cloud characteristics – ionization (1/2)

Saha equilibrium ionization for early plasma cloud

- Mixture concentrations
- Ionization potential lowering
- Canonical partition functions

eesa

Modeling Plasma cloud characteristics – ionization (2/2)

Non-equilibrium recombination according to *Kuznetsov* & *Raizer (1965)*

eesa

Modeling Plasma cloud characteristics – expansion (1/3)

Spatial and temporal evolution of plasma cloud

- Semi-spherical cloud boundary
- Self-similarity (geometric scale invariance)
- Spherical symmetry
- Isentropic expansion
- Horizontal velocity component

eesa

🗾 Fraunhofer

EMI

Modeling Plasma cloud characteristics – expansion (2/3)

Collisional expansion

- Constant asymptotic expansion velocity
- Gaussian density profile

Modeling Plasma cloud characteristics – expansion (3/3)

Collisionless expansion

Charge separation at cloud boundary

Modeling **Plasma model validation**

Charge yield model vs. empirical relations (Fe \rightarrow Au)

eesa

🗾 Fraunhofer EMI

Modeling Antenna

Direct collection of cloud charges at antenna or by spacecraft

Disturbance of antenna potential

Modeling Signal generation (1/2)

- 1) Direct sampling of cloud electrons at antenna
- 2) Indirect detection of charges recollected by spacecraft potential
- 3) Suppression of photo return current according to Pantellini et al. (2012)
- 4) Secondary electron emission at antenna through plasma cloud using standard SEE model according to *Dionne (1975), Whipple (1981)*

Modeling generation (2/2) Signal

Analysis **Impact plasma**

Analysis Voltage amplitudes

Analysis Sensor configuration

Cesa Fraunhofer

Conclusions and outlook

Fraunhofer EMI is currently investigating the feasibility of impact detection using antennas as simple charge detectors

- A comprehensive impact plasma model has been developed and implemented as software
- Simulations and parametric analysis of antenna configurations and impact parameter correlation are currently ongoing
- Sensor feasibility will be evaluated until end of June (project end)

Modeling Plasma cloud characteristics – time scales

🗾 Fraunhofer

EMI