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Water 
radiolysis … 
A REMINDER
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Contribution to cell death of 
indirect effects VS LET 4

Hirayama et al, 
Rad Res 171, 

212-218 (2009)

Why modelling
indirect effects?

èContribution of indirect 
effects to cell death up to 

70% in case of ion 
irradiation

Indirect effects are not negligible
à Water radiolysis
à Chemical stage 

should be simulated



Modelling
chemistry in 
Geant4 ?
PHYSICO-CHEMICAL & CHEMICAL STAGES
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Dissociative   Electron  Attachment
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Physico-chemical stage 10

• Situtation at  1  picosecond?
• Can  be tuned by  the  user

• Note: the  current version  of  the  physico-­‐chemistry is not  compatible  with
the  atomic deexcitation theory available in  Geant4

Kreipl et  al,  2009

Electronic state of water 
molecule Dissociation channels Fraction (%)

All single ionization states: H2O+ H3O + + •OH 100
Excitation state A1B1: 

(1b1) → (4a1/3s)

•OH + H•

H2O + ∆E
65
35

Excitation state B1A1:
(3a1) → (4a1/3s)

H3O + + •OH + e-
aq (AI)

•OH + •OH + H2

H2O + ∆E

55
15
30

Excitation state: 
Rydberg, diffusion bands

H3O + + •OH + e-
aq (AI)

H2O + ∆E
50
50

Dissociative attachment: H2O- •OH + OH- + H2 100

t=10-­15s t=10-­12s t=10-­6s



Physico-chemical stage 11

• Where to  place  the  radiolytic products?
• Defined in  G4DNAWaterDissociationDisplacer

Kreipl et  al,  2009

Hole hopping Product 1 Product 2 Product 3

H3O + + •OH
𝑅	
  (2	
  𝑛𝑚)

(charge transfer)
0* 𝑅(0.8	
  𝑛𝑚)* —

H3O + + •OH + e-
aq

(AI)
𝑅(2	
  𝑛𝑚)

(charge transfer)
0* 𝑅(0.8	
  𝑛𝑚)*

•OH + H• 0
-1/18 ×

𝑅(2.4	
  𝑛𝑚)

17/18 ×

𝑅(2.4	
  𝑛𝑚)
—

H2+ •OH + •OH 0
-2/18 ×

𝑅	
  (0.8	
  𝑛𝑚)

16/18×𝑅(0.8	
  𝑛𝑚) +1/2×

𝑅(1.1	
  𝑛𝑚)

16/18×𝑅(0.8	
  𝑛𝑚) -

1/2× 𝑅(1.1	
  𝑛𝑚)

H2+ •OH + OH- 0
-2/18 × 𝑅(0.8	
  𝑛𝑚) 16/18×𝑅(0.8	
  𝑛𝑚)

+1/2×𝑅(1.1	
  𝑛𝑚)

16/18×𝑅(0.8	
  𝑛𝑚) -

1/2× 𝑅(1.1	
  𝑛𝑚)

t=10-­15s t=10-­12s t=10-­6s



Physico-chemical stage

Electron – water anion recombination

e- + H2O+ à channel 1 / 2 / 3

u 15-25 % of water anions recombine with electrons at room temperature 
à non negligeable

u Decrease the number of solvated electrons

u Form H2 product, stable species

u This reaction might be strongly temperature dependent

12
t=10-­15s t=10-­12s t=10-­6s



Physico-chemical stage
Models for e- + H2O+ à channel 1 / 2 / 3

u Model 1: Onsager model and derivatives … 
Escape probability (when the external field is zero)

u 𝜙 = exp −34
35

ß original Onsager’s formula for 𝐹789 	
  = 	
  0 (derived from

swarm particles models)

u 𝑟; =
7<

=>??5@AB
is called the Onsager radius and corresponds to the distance 

at which the potential energy of the pair equals the thermal energy

u 𝑟C is the initial separation distance

u Model 1 being tested

13
t=10-­15s t=10-­12s t=10-­6s



Physico-chemical stage
Models for e- + H2O+ à channel 1 / 2 / 3

u Model 2: « Molecular dynamics »-like treatment : 
u The electron is still tracked using the cross sections of DEA & 

vibrational/rotational excitation

u But the sub excitation electrons also migrate in the potential
generated by all the nearby holes and electrons in diffusion

u Accounts for the decceleration of the electrons, and the effect of 
« crowdy » regions

u Note to G4 developers
Model 2 would require the physics models to work in the 
chemistry framework, feasible, but G4VEmProcess should not 
store locally « track-dependent attributes » 
(e.g. theNumberOfInteractionLengthLeft)

14
t=10-­15s t=10-­12s t=10-­6s



Physico-chemical stage

u Dominant species at the end of the physico-
chemical stage

H3O+ , e-
aq , °OH

15
t=10-­15s t=10-­12s t=10-­6s



Chemical stage
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Computational complexity

« Full  atomistic »  
approach

Molecules =  balls
Solvant =  
continuum

Time  evolution of  
concentrations in  
voxellized geometry

Well adapted for  few  
molecules and  
heterogenously

distributed

Assumption :  molecules are  
homogenously distributed into
one  voxel.  More  adapted for  

large  N

Chemical stage: representation? 17
t=10-­15s t=10-­12s t=10-­6s



Computational complexity

ns us mspsfs

« Full  atomistic »  
approach

Molecules =  balls
Solvant =  
continuum

Time  evolution of  
concentrations in  
voxellized geometry



Computational complexity

Kinetic constants

« Full  atomistic »  
approach

Molecules =  balls
Solvant =  
continuum

Time  evolution of  
concentrations in  
voxellized geometry
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Diffusion
SMOLUCHOWSKI DYNAMICS

20



Brownian motion – the Langevin equation

u A particle in a fluid is slowed down by a friction force:

𝑚𝑥̈ = −𝛼𝑥̇H
Friction	
  force

+ 𝐹789(𝑥)

u If its mass is weakà the particle undergoes multiple 
collisions with the medium :

𝑚𝑥̈ = −𝛼𝑥̇ + 𝐹789 𝑥 + 𝜓(𝑡)H
Random	
  force

u This is the so-called Langevin equation è stochastic

21



Towards the Smoluchowski-Debye equation

u Langevin Equation 

𝑥̈ = −
𝛼
𝑚 𝑥̇ +

𝐹789 𝑥
𝑚 +

𝜓 𝑡
𝑚

𝑥̈ = −𝛾𝑥̇ +
𝐹789 𝑥
𝑚 + Γ 𝑡H

Langevin	
  force

Where 𝛾 = ]
^

u Hypothesis
Γ(𝑡) = 0

Γ 𝑡_ ⋅ Γ 𝑡a = 𝑞 ⋅ 𝛿(𝑡_ − 𝑡a)
Very weak mass + thermal equilibrium⇒ 𝛾𝑥̇ ≫ 𝑥̈

𝛾𝑥̇ =
𝐹789 𝑥
𝑚 + Γ 𝑡H

Langevin	
  force

22



Smoluchowski-Debye Equation 

u Stochastic differential equation

𝑥̇ =
𝐹789 𝑥
𝑚	
  𝛾

+
Γ 𝑡
𝛾

u The position is described by a density probability function p described by a 
Fokker-Planck equation

𝜕𝑝 𝑥, 𝑡i𝑥C,𝑡C
𝜕𝑡

=
𝜕
𝜕𝑥a

	
  (𝐷 ⋅ 𝑝) −
𝜕
𝜕𝑥
⋅
𝐹789 𝑥
𝑚𝛾

⋅ 𝑝

where 𝐷 = k<

al
with Γ 𝑡_ ⋅ Γ 𝑡a = 𝑞 ⋅ 𝛿(𝑡_ − 𝑡a)

23



Smoluchowski-Debye Equation 

u Solutions of the SDE in absence of external field

𝑝 𝑥, 𝑡i𝑥C, 𝑡C =
1

4𝜋𝐷 𝑡 − 𝑡C
_
a
exp −

𝑥 − 𝑥C a

4𝐷 𝑡 − 𝑡C
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  1D

𝑝 𝑟, 𝑡i𝑟C , 𝑡C =
4𝜋𝑟a

4𝜋𝐷 𝑡 − 𝑡C
o
a
exp −

𝑟 − 𝑟C a

4𝐷 𝑡 − 𝑡C
	
  	
  	
  	
  	
  	
  in	
  3D	
  integrated	
  over	
  the	
  angles

where 𝐷 = k<

al
with Γ 𝑡_ ⋅ Γ 𝑡a = 𝑞 ⋅ 𝛿(𝑡_ − 𝑡a)

è The simulation is a succession of time steps Δt where Δt = t – t0

24



Illustration in Geant4-DNA 25

Reel diffusion  
step

Observed step	
  r(t-t0)

Molécule  1
Molécule    2

Point  1

Point  2

Diffusion-­‐controlled reactions in  Geant4-­‐DNA,  
J  Comp Phys (2014),  274,  841-­‐882

𝑝 𝑟, 𝑡i𝑡C =
4𝜋𝑟a

4𝜋𝐷 𝑡 − 𝑡C
o
a
exp −

𝑟a

4𝐷 𝑡 − 𝑡C



Standard Geant4 transport 
VS Brownian motion

Standard transport of  
Geant4 Brownian motion

Position and 
velocity

Deterministic
(between two interactions 

points)
Stochastic

Path-volume
Intersection

« Exact » intersection 
computable

Is expressed in terms of
probability

Equation of 
motion Newton

Fokker-Planck 
(stochastic equation of 

motion)

26



(Some) requirements for Brownian dynamics simulations

u Given initial positions at time t=0 and Δ𝑡

à sample probable positions

u Given initial position, distance to a 

boundary

à sample a time at which the particle can

cross the boundary

u Given a time step Δ𝑡, initial and final 

distances of a Brownian particle from a 

boundary

à what is the probability that the Brownian

crossed a boundary during the step

27

Δ𝑡	
  known
𝚫𝒙 ?

Δx	
  known
𝚫𝐭 ?

Problem known as  the  
« first  passage   time  »

Space-­driven stepping

ΔxC	
  &	
  Δ𝑥y known for  Δ𝑡
𝐂𝐫𝐨𝐬𝐬	
  𝐛𝐨𝐮𝐧𝐝𝐚𝐫𝐲 ?

Problem known as  the  
«Brownian bridge»

Time-­driven stepping



(Some) requirements for Brownian dynamics simulations

Not yet used in the current version

u Given initial positions at time t=0 and

Δt and knowing distances from

reflective boundaries à sample

probable positions for a selected time

step knowing that the particle will be

reflected by the surface

28

Time-­driven stepping
with reflective
boundaries

Δt	
  known
𝑥C	
  &	
  𝑥y ?



1/ Time-driven stepping

u Two methods
u Step-by-step method – the Ermack McCammon

algorithm

Δ𝑥� = 2𝐷Δ𝑡 ⋅ 𝑁 0,1 +
𝐷 ⋅ Δ𝑡
𝑘�𝑇

⋅ 	
  𝐹�(𝑥�C)	
  

with Δ𝑡 ≫ ^�
@AB

, 𝑁 0,1 is a random number sample
from a Gaussian distribution of mean 0 and standard 
deviation 1

Equivalent to the Smoluchowski dynamics

u Sampling probability functions

29
Δ𝑡	
  known
𝚫𝒙 ?

Time  steps are  fixed
Space steps are  computed



3D (isotropic) 
version of IRT

30
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Figure 1: In blue: probability distribution of the one-dimensional diffusion, in red: probability
distribution function of the three-dimensional diffusion
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1. Introduction

In this short paper, we present a numerical method to sample random events
(time or space) from an exact solution of the three-dimensional Smoluchowski
diffusion equation.
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Using j

c we build as a numerical table, the inverse probability function. We
note that j

C does not explicitly depend on diffusion coefficient and time which
make this function general enough to handle any type of Brownian objects.

3. Numerically build quantile function for one random variable

In Monte-Carlo simulations, one of the function of interest is the so-called
quantile function which corresponds to the inverse of the cumulative distribu-
tion function. This function is used in inverse transform sampling to generate
random variables Often, inverting the distribution is anaytically very difficult
if not impossible. However, a numerical approximation may be obtained. In
this section, we present a general algorithm 1 to build a table I

j

of the quantile
function’s values. The obtained table is not explicitly dependent on time and
diffusion coefficient and therefore it is general enough to be computed it only
once, while remaining valid for all of Brownian objects and time. Using table I

j

we can interpolate any values of the probability distribution’s inverse function.

4. Computing random events

Let be a Brownian object located at the center of a sphere of radius R from
which the Brownian object may escape.

1. First passage time: compute the probability that the Brownian will still
be located in the sphere after a time t

Density probability

Probability:  𝑥(Δ𝑡) ≥ 𝑅
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Using j

c we build as a numerical table, the inverse probability function. We
note that j

C does not explicitly depend on diffusion coefficient and time which
make this function general enough to handle any type of Brownian objects.

3. Numerically build quantile function for one random variable

In Monte-Carlo simulations, one of the function of interest is the so-called
quantile function which corresponds to the inverse of the cumulative distribu-
tion function. This function is used in inverse transform sampling to generate
random variables Often, inverting the distribution is anaytically very difficult
if not impossible. However, a numerical approximation may be obtained. In
this section, we present a general algorithm 1 to build a table I

j

of the quantile
function’s values. The obtained table is not explicitly dependent on time and
diffusion coefficient and therefore it is general enough to be computed it only
once, while remaining valid for all of Brownian objects and time. Using table I

j

we can interpolate any values of the probability distribution’s inverse function.

4. Computing random events

Let be a Brownian object located at the center of a sphere of radius R from
which the Brownian object may escape.

1. First passage time: compute the probability that the Brownian will still
be located in the sphere after a time t

1/ Time-driven stepping – Probability
functions

1D

1D

3D

3D

Initial  position
x =  0  
or  r=  0

Time  steps are  fixed
Space steps are  computed



2/ First passage time
(First-hitting-time)

1) Follow the trajectories step-by-step

u To avoid small time steps Δ𝑡à select Δ𝑡^�8	
  ,	
  the biggest time steps possible during 

which it is guaranteed the boundary is not crossed

u For instance : select Δ𝑡^�8	
   such as

𝑃	
   Δx, Δ𝑡^�8 = 95%	
  

One can use minimum allowed time steps Δ𝑡^�� to guarantee that the time steps don’t 

become too small

u When the particle gets close to the boundary by a certain threshold (could be time 

or space based) use tricks to either

u Adjust the final time step

u Take the full time step Δ𝑡^�� and use Brownian bridge to determine if the particle has 

crossed the boundary during Δ𝑡^��

31
Δx	
  known
𝚫𝐭 ?

-­‐‑ Δ𝑡^�8 are  dynamical
computed

-­ Space steps are  sampled
using Δ𝑡^�8



2/ First passage time
(First-hitting-time) 

2) Sample the probability function to predict a first passage time

u For instance, in 1D, invert in respect to time

𝑃 = erfc
Δ𝑥
2 𝐷𝑡

In 3D, the direct inversion technique does not work because the probability
is more complicated

u Advantage compared to the step-by-step stepping : only one step taken
(event-driven simulation)

32
Δx	
  known
𝚫𝐭 ?



3/ Brownian bridge

u Given a time step Δ𝑡, initial and final distances of a Brownian
particle from a boundary à what is the probability that the 
Brownian crossed a boundary during the step

𝑃 = 𝑒𝑥𝑝 −
𝑑C𝑑y
𝐷 ⋅ Δ𝑡

Where 𝑑C is the initial distance from the 
boundary and 𝑑y is the final distance from
the boundary
u Note: The current implementation is a 

1D approximation

33
dC	
  &	
  𝑑y known for  Δ𝑡
𝐂𝐫𝐨𝐬𝐬	
  𝐛𝐨𝐮𝐧𝐝𝐚𝐫𝐲 ?

t

x(t)

tR

R

x0

𝑥y

𝑑y𝑑C



Reactions
SMOLUCHOWSKI REACTION MODEL –
DIFFUSION CONTROLLED
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Reaction rate constant 1/2
u Chemical master equation (reaction level – well mixed chemical system)

Number of species : 𝑁 𝑡 = 𝑁_(𝑡), 𝑁a(𝑡), … , 𝑁� 𝑡
Time evolution of 𝑁 𝑡 is stochastic and defined by the density probability 𝑝

𝜕𝑝 𝑁 𝑡 ,𝑡
𝜕𝑡

= � 𝑎3 𝑁 𝑡 	
  − 𝜈3 ⋅ 𝑝 𝑁 𝑡 − 𝜈3, 𝑡
3�bimolecular	
  reactions

− � 𝑎3 𝑁 𝑡 ⋅ 𝑝 𝑁 𝑡 , 𝑡
3�unimolecular	
  reactions

u Ordinary differential equations

𝑑 𝑁@
𝑑𝑡

= � ±𝑘�� ⋅ 𝑁� ⋅ 𝑁�
�,��bimolecular	
  reactions

+ � ±𝑘� ⋅ 𝑁�
��unimolecular	
  reactions

u Observed reaction rate constant

𝐴 +𝐵
@� ¡ 𝑃

𝑑 𝑃
𝑑𝑡 = 𝑘¢£¤ 𝐴 𝐵
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Solvation Cage

R0A
B B

36

Solvant
molecules

𝐴 + 𝐵 ⇄
@¦

@4
𝐴: 𝐵

@¨ 𝑃



Reaction rate constant 2/2
u Reaction rate constant when complex life time very short

𝐴 + 𝐵 ⇄
@¦

@4
𝐴:𝐵

@¨ 𝑃

𝑑 𝑃
𝑑𝑡 =

𝑘©
𝑘� + 𝑘©

𝑘; ⋅ 𝐴 𝐵 −
𝑑 𝐶
𝑑𝑡

If « ;
«9 → 0 since « ­

«9 = 𝑘¢£¤ 𝐴 𝐵

𝑘¢£¤ =
𝑘©𝑘;
𝑘� + 𝑘©

NB: this steady-state approximation will be removed with next versions of the chemistry

u Reaction rate constant in case of diffusion-controlled reaction (also called diffusion-limited reaction)

lim
@¨→®

𝑘¢£¤ = lim
@¨→®

𝑘;
𝑘�
𝑘©
+ 1

= 𝑘; 	
  → 𝑘¢£¤ ≈ 𝑘;

Note: when 𝑘© is finite, we fall in the case of the so-called partially diffusion-controlled reactions for 

which models are being considered for next versions of Geant4-DNA chemistry

37



Smoluchowski definition of 
reaction rate constant

u Link between microscopic description and reaction rate constant :

k = flow of particles in solvation cage

𝑘; =	
   𝒩± ⋅ 𝑉 ⋅ ³ 𝚥
«¶

⋅ 𝑑𝑆

In the absence of external field:
𝑘; = 4𝜋𝒩±	
  𝐷𝑅C

Where 𝐷 is the sum of diffusion coefficients and 𝑅C the sum of the radius of the cages

In case of Coulombic field

𝑘; =
4𝜋𝒩±	
  𝐷𝑅;

exp 𝑅;
𝑅C

− 1
 

With 𝑅; =
k¸k<

?¹?5@AB
is the so-called Onsager radius

38

Using  Smoluchowski theory,  we  
can  linked  observed  reaction  
rate  constantss with  reaction  

radius

R0A
B B



The implemented method
- STEP-BY-STEP WITH DYNAMICS TIME STEPS AND BROWNIAN

BRIDGE
- DIFFUSION-CONTROLLED REACTIONS

39



The step –by-step method:  principle

t=10-­12s t=10-­6s

r  <  Reaction  radius  R ?
Yes

r

NO  Etape chimique

Step-by-step method
1. Interaction

Can the molecules react ?
Criterium: separation distance

2. Take one diffusion step for all 
molécules, return to 1)

40



The step –by-step method: reaction

Reaction  
radius

Smoluchowski  model:

Reaction  rate  
constant

Sum of  the  diffusion  
coefficients  of  the  
reactants

Reaction  calculated after each step  Δt …

r  <  Reaction  radius  R  ?
Yes

r

NO  

41

𝑅C =
𝑘

4𝜋𝑁±𝐷



Step-by-step: method: How to choose Δt ? 42

u Two solutions have been implemented in Geant4-DNA

1) Select an arbitrary time step

u Example : A la PARTRAC*
Step Δt are predefined and evolved along the simulation

2) Compute it in respect to the next reaction*

u Explanation …

*Kreipl et  al,  Radiat
Environ  Biophys,  48,  
11-­20    (2009)

*Michalik et al., Radiation Research 
149, 224-236 (1998) 



u How to compute a Δt in order not to miss reactions?

Step-by-step method: diffusion process

Position at t0

43

Same problem as  
the  first  passage  

time

Δx	
  known
𝚫𝐭 ?



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

r(t)

p(r,t)

44

Position at t0

𝑡_ > 𝑡C



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

r(t)

p(r,t)

𝑡a > 𝑡_

Position at t0

45



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

r(t)

p(r,t)

Position at t0

46

𝑡o > 𝑡a



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

r(t)

p(r,t)

Position at t0

47

𝑡= > 𝑡o



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

Δ𝑡 = ? p(r,t)

R

r(t)
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u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

p(r,t)

r(t)

R

49

Δ𝑡 = ? 



u How to compute a Δt in order to avoid missing reactions?

Step-by-stepmethod: diffusion process

p(r,t)

r(t)
r96(t)

« Dynamical time  step »  technique* *Michalik et al., Radiation 
Research 149, 224-236 (1998) 

R

50

-­‐‑ Δ𝑡^�8 are  dynamical
computed

-­ Space steps are  
sampled using Δ𝑡^�8

Δx	
  known
𝚫𝐭 ?

Δ𝑡 = ? 



Dynamical time-step –
Protective time-space spheres

51

The  dynamical time  steps method
can be seen as  defining

« protective  time-­space spheres »*  
where diffusion  steps can be taken

safely without reaction

*This  is just an  illustration



Drawback of the dynamical time steps 52

u Multiple smaller and smaller steps



Drawback of the dynamical time steps

u Multiple smaller and smaller steps before
reacting (or not)

53



Drawback of the dynamical time steps

u Multiple smaller and smaller steps
u Solution: impose a minimum time step
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Drawback of the dynamical time steps

u Multiple smaller and smaller steps
u Solution: impose a minimum time step
u Problem : may miss reactions

?
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Drawback of the dynamical time steps

u Multiple smaller and smaller steps
u Solution: impose a minimum time step
u Problem : may miss reactions

u Solution: compute a probability of encounter when threshold
time steps are used
u Brownian bridge (1D approximation)

?
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Speed up the step by step method … 57

u Brute-force method
Compare all distances between N reactants
u Number of elementary operations ≈ N2/2
u Drawback: CPU

u Solution : k-d tree

Reaction  è search for  the  closest neighbor



58
dC	
  known
𝚫𝐭 ?

Compute 	
  Δ𝑡^�8

ΔxC	
  known
𝚫𝐭 =Δ𝑡^�8

If Δ𝑡^�8 < Δ𝑡»�^

ΔxC	
  known
𝚫𝐭 =Δ𝑡»�^

If dC < 𝑅C Make reaction

Check reactivity via 
Brownian bridge

Can  react
Can not  react

Diffusion



At  each time  step,              for  each reaction…

Define time step user limit Δ𝑡^��

1) Start simulation: Δ𝑡 = 𝑀𝐴𝑋

2) Find the closest pair of 
reactants

Estimate the minimum encounter 
time Δ𝑡¿

if Δ𝑡¿ ≤ Δ𝑡^�� 	
  

else if Δ𝑡¿ ≤ Δ𝑡

Δ𝑡 = Δ𝑡^��

Δ𝑡 = Δ𝑡¿

else

Save the pair

All reactions
processed ?

3) Diffuse all molecules
in Δ𝑡

4) Apply reactions
when possible

YesNo

The  stepping algorithm*

*  simplified

Brownian
motion

Brownian
bridge for 
Δ𝑡	
  =Δ𝑡 �̂�

k-d tree

dynamic
time steps
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Reaction Reaction rate 
(1010 M-1 s-1)

H3O+ + OH-→ 2 H2O 14.3
•OH + e-

aq → OH- 2.95

H• + e-
aq + H2O→ OH- + H2 2.65

H3O+ + e-
aq → H• + H2O 2.11

H• + •OH → H2O 1.44

H2O2 + e-
aq → OH- + •OH 1.41

H• + H•→ H2 1.20
e-

aq + e-
aq + 2 H2O→ 2 OH- + 

H2
0.50

•OH + •OH → H2O2 0.44

Species Diffusion coefficient D 
(10-9 m2 s-1)

H3O + 9.0
H• 7.0
OH- 5.0
e-

aq 4.9
H2 4.8

•OH 2.8
H2O2 2.3

We followed the set of parameters
published by the authors of the
PARTRAC software (Kreipl et al., REB
2009). However, these parameters
can be modified by the user.

Chemical stage: 
parameters

t=10-­15s t=10-­12s t=10-­6s

Kreipl et al, 2009
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$G4INSTALL/source/processes/electromagnetic/dna

Molecules

Management

General 
molecule 

classes

Types

H2O, °OH  
H+…Management

1. Transport algorithm
2. Navigation

3. Space partitioning
algorithm
(k-d tree)

Processes
1. Molecular 

deexcitation
2. Brownian transport

3. Thermalisation
4. Electron-anion 

recombination

Models

1. Diffusion-Reaction 
models 

(Smoluchowski)
2. Step-by-step 

method…

Utils

1. Physics-Chemistry 
interface

2. Reaction table
3. Model interfaces…
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Class  hierarchy



G4DNA chemistry
limitations

Usage
•Add reactions à data needed
•Limited number of simulated molecules

(simulation limited to small volumes)
•Still a prototype, refactoring needed
à Bad interface, bugs etc …
à Don’t hesitate to report to us any bug

Models
•Particle-continuum representation 
à CPU and memory consuming
à Run on a cluster 

•No reversible reactions
•Diffusion controlled reactions only
•Real dissociation scheme of water molecule?
•Working on new models to handle partially

diffused-controlled reactions with reversible
intermediate state
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Notes related to the delivered code

u The code which is delivered to you today is a beta release

u Known bugs

u When beaming protons, solvated electrons may get solvated out of the 

volume of the electron originate, you’ll see warnings thrown by G4Navigator

u Radiolytic products could also be generated out of the original volume for 

similar reasons

u Don’t use this code for production!

u With final 10.2 release, minor interface change will occur (definition of 

species, UI commands …)
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Perspectives
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Remarks

Heterogenous to 
homogeneous phase
(radiolytic products orignally
located close to the deposited

energy then diffuse)

As LET increases
è deterministic

Biochemical processes
è high N molecules

è often used
compartment
approaches

Radical-biomolecules
reactions (such as 

proteins, lipids …)?

Need to go to higher
time 

(DNA repair – protein
recruitment)

è Develop a  hybrid method combining particle-­based and  
compartment representations
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Computational complexity

ns us mspsfs

« Full  atomistic »  
approach

Molecules =  balls
Solvant =  
continuum

Time  evolution of  
concentrations in  
voxellized geometry



Merging representations

Diffusion

- One volume may have both particle-based (to handle low number of species) and 
compartment-based/well-stirred (to handle high number of species) representations

67

Volume A
Particle-based

Volume A1
Model: Compartment-
based
Species
(A1_E1,A1_E2)

Volume A2
Model: Particle-based
Species
(A2_E1,A2_E2)

Volume B
Model: Particle-based & 
compartment-based



Alpha testers
u Major developments will not be released in official Geant4 releases before

2017/2018 – The code delivered to you today is been largely rewritten à we need
to test it

u Alpha testers should be experimented Geant4 Users/Developers only

u Role

u Suggest new features / propose new developments

u Report bugs, test the code for your use case

u Drawbacks

u Unstable versions 

u You’ll not be allowed to published any results coming out the alpha releases, neither the 
methods being developed

u Alpha testing starting in 2016
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Thank youJ

Questions?

71

Diffusion-­‐controlled reactions in  Geant4-­‐DNA,  J  Comp Phys (2014),  274,  841-­‐882


