

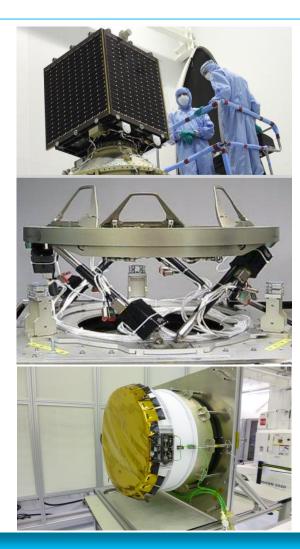
QinetiQ Space – Prime view on RTU

Peter Holsters A presentation to: ADCSS 2015 22nd of October 2015

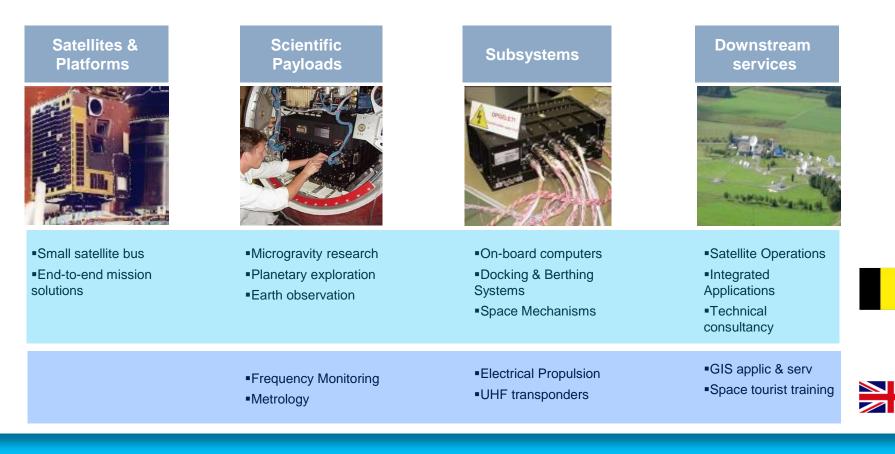
Company introduction – Key data

- Former Verhaert Space (name change April 2010 to QinetiQ Space)
- Founded in 1969 as industrial product developer
- Space activities started in 1983

QinetiQ


- Delivered 100+ systems and sub-systems for manned space stations, satellites and interplanetary missions
- Acquired by the QinetiQ group (UK) in 2005
- 110 employed in BE+ 60 in Farnborough (UK)

Company introduction – what we do?


- In satellite market,
 - Small satellites based on PROBA platform
 - Satellite equipments, including
 - On-board computer
 - Power subsystem
 - Remote terminal units
 - Onboard mass memories
 - Baffles and cover mechanisms
- Contributor to ISS infrastructure,
 - scientific instruments
 - conduct microgravity experiments,
 - Conduct medical, physical and biological research,
 - Create and test new materials,
 - Carryout technological trials,
 - Docking mechanism

QinetiQ

Company introduction – business lines

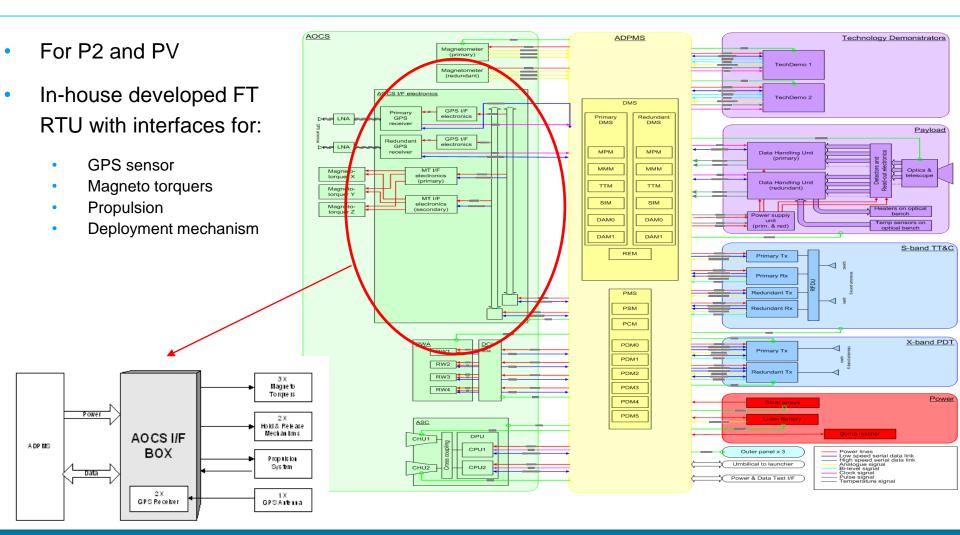
Fully focused on space activities

Spacecraft avionics equipments - examples


- Integrated avionics for small satellites
 - Advanced Data and Power Management System (ADPMS)
 - Data-processing and storage devices for earth-observation imagers (Payload processing units, Mass Memory units, ...)
 - Remote Terminal Unit's (RTU)

PROBA-V NAND Flash mass memory

IXV on-board computer (FM)


PROBA-2 RTU (FM)

PROBA-V ADPMS (FM)

Spacecraft avionics – architecture overview

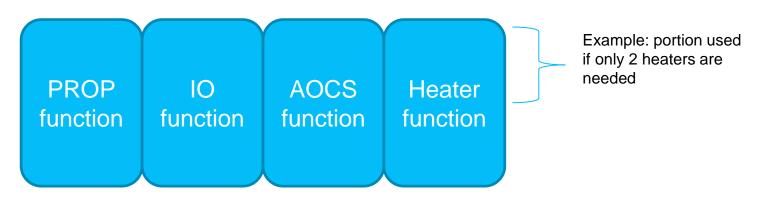
Spacecraft avionics – architecture overview

	REM		EU 28V V85	
			8x 35mA (Red) Quin Bensors 8x 35mA (Nom) 0un sensor n	
	PM5 POM POM POM0		PVML (nom) OPSE (CI) PVML (nom) LEDs Cluster 1 -x2 Therm. Bensor (nom + red) LEDs Cluster 2 PVML (red) LEDs Cluster 3 -x2 Therm. Bensor (nom + red) LEDs Cluster 3 -x3 Therm. Bensor (nom + red) LEDs Cluster 3 -x3 Therm. Bensor (nom + red) LEDs Cluster 3 -x3 Therm. Bensor (nom + red) LEDs Cluster 3	PROPULSION (N2)
	PDM2 PDM3 PDM4	80 28V		Tubing (red)
_	PDMS	PPS clock sync	- x1 24V Supply (red) - x1 Therm. Bentor (red) - x1 Obtus (red) - x1 24V Supply (red)	Low pressure transducer (red) High pressure transducer (red)
			x1 Therm. Sensor (red)	Pressure regulator (red)
=				1x LV (red)
		x2 Therm. Sensor		12x FCV (red)
			x3 Therm. Sensor (nom)	Tubing (nom)
-			- x1 Status (nom)- - x1 28V Supply (nom)- - x1 Therm. Sensor (nom) - x1 Status (nom)	Low pressure transducer (nom)
			x1 28V Guppy (nom)- x1 Therm. Sensor (nom)- x3 Therm. Sensor (nom)- 	High pressure transducer (nom) Pressure regulator (nom)
-		PP8 clock sync		1 tx LV (nom)
=				12x FCV (nom)
⊨			x18 Therm. Sensor (nom)	\bigtriangleup
E			— — —6 lines for heaters (nom)— — → — — 6 lines for heaters (red)— — →	

- For P3
- RTU with interfaces for:
 - Propulsion
 - Deployment mechanism
 - TC heaters
 - Sun sensors
 - Interfaces to payload

The RTU on PROBA spacecraft

- The RTU how is it used on PROBA spacecraft?
 - Never the same...
 - Seen as extension of main on-board computer, mainly interfaces.
 - Almost by definition "mission specific", i.e. all interfaces issues are resolved here.
 - Because of RTU, core avionics can remain mission independent.
 - Consequently, interest to keep RTU "as simple as possible"; e.g. no intelligence.
 - Central OBC has plenty of CPU, no need for decentralisation of FDIR
 - RTU should be "smart modular", i.e. smaller spacecraft should result is smaller RTU


Operability concept for RTU

- Common operability concept is obvious beneficial
- How to reach commonality?
 - As every platform is different... Keep it simple, e.g. some examples
 - implement only low level FDIR (e.g. current protection) : detection of failures, report to central OBC
 - no automatic reconfiguration
 - Limit amount of operational modes: ON or OFF.
 - Limit reconfigurable or settable items
- Other
 - Support high-level commanding
 - Small satellite specific: support cold redundancy

QinetiQ

Modular design

- Expectations
 - See above RTU is almost by definition mission specific so modularity is obvious
 - Main points smaller spacecraft should result is smaller RTU
 - Main RTU target large satellite market and offer maximum of interfaces and functions
 - Every function is different boards

- Consequence: RTU size depends on #functions, not on spacecraft size or amount of interface
- Improve granularity !

Building blocks

- Intelligent RTU?
 - The FDIR concept is part of the core of a satellite platform
 - Has been tried and tested since many years
 - Have experienced problems if too much FDIR in unit
 - Conflicting actions
 - FDIR too tight
 - In case of autonomous actions, state of unit is not always clear to central SW
 - ...
 - Central OBC usually has plenty of CPU power,
 - No "technical" need for decentralising intelligence

Data Handling and AOCS functional chains

- More integration?
 - Encouraged from prime point of view
 - e.g. PROBA RTU houses a GPS receiver
 - Similar concept can be applied to e.g. star tracker electronics, RW electronics etc.
 - Understood from RTU supplier less obvious

Final remarks

- RTU should be the place to absorb mission re-configurability
- To enable this, RTU should be kept "simple"
- RTU should be "smart modular"
- No commercial small satellite RTU available on the market

QinetiQ Space nv

www.QinetiQ.be

