Final Presentation Single Board Computer Core Phase 2


ESA Contract No. 4000111565/14/NL/AK ESA Technical Officer: Kostas Marinis, TEC-EDD

Torbjörn Hult

- Chief Engineer Digital Products
- RUAG Space AB Sweden
- Final Presentation Days, 2015-06-02

RUAG Space at a Glance

- Leading European space product supplier to the industry
- Acquisition of Saab Space and Austrian Aerospace (2008),
 Oerlikon Space (2009), Patria Space (2015)
- Eight sites in four countries
 (Switzerland, Sweden, Finland and Austria)
- US office in Denver, Colorado
-] 1180 employees
-] Total revenues (2014): 265 M€
-] Headquarters: Zurich (CH)
- This activity carried out by RUAG Space AB in Gothenburg, Sweden

ahead.

RUAG Space AB, Sweden - RSE

Headquarters and center for Computer Systems, Antennas and Microwave Electronics: Göteborg, Sweden

Together Together Together Together Together Together Together

Mechanical systems Linköping operations, Sweden

2014: Sales: No of employees:

785 MSEK, 86 MEuro, 115 MUSD 374

RSE Product Areas

Computer Systems

Adapters and separation systems

Satellite Structures

Antennas

Frequency Converters & Receivers

Single Board Computer Core Needs

- RUAG is a major European supplier of On-Board Computers (OBCs) and Spacecraft Management Units (SMUs)
- The next generation computers requires
 - new and updated functionality since standards and mission needs evolve with time
 - reduced weight & volume
 - reduced power consumption
 - reduced cost

Evolution of Standards

New CCSDS recommendations on security, CCSDS 355.0-R-3
 Includes Transfer Frame Header in the MAC computation
 Separate security headers and security trailers

Updated SpaceWire standard, ECSS-E-ST-50-12C Rev1
 Changed definition of Time Codes
 Introduction of Distributed Interrupts/Distributed Interrupt Acknowledge

- Upcoming SpaceWire standards
 - SpaceWire-D
 - SpaceWire Time Distribution

Evolution of Mission Needs

] More memory

Increased size of processor execution memory as well as software storage memory

☐ Larger mass memory with non-volatile capability

☐ File based operation

Introduction of CCSDS File Delivery Protocol

] More SpaceWire links

SpaceWire used for both platform and payload

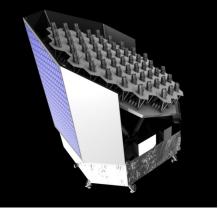
Specific missions need more processing performance

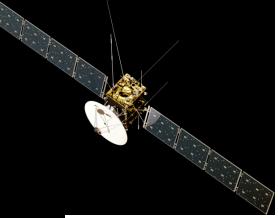
Together ahead. RUAG

Single Board Computer Overview

- The Single Board Computer Core (SBCC) is a major evolution of the OBC and SMU
- ☐ The SBCC integrates all functions and interfaces needed for an OBC or an SMU core on a single board
- □ Large Instrument Control Units will also benefit from SBCC, allowing synergies between data handling and instrument control computers
- The SBCC improves the OBC and the SMU core (since an SMU is an OBC plus I/O modules in one unit)

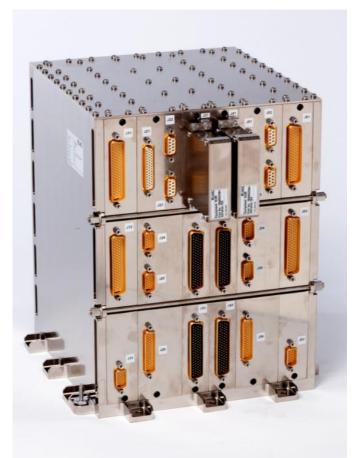
SBCC Target Missions


Future ESA constellation, earth observation & science missions


Juice, Plato, Athena, FLEX/CarbonSat, upcoming Mars and Planetary Exploration missions, Galileo Next, future Instrument Control Units ...

Future commercial telecom and earth observation satellites

Emerging markets
 Non-European Programmes
 Integrated Avionics


Synergies with launcher computers

Current OBC Concept

- Two digital boards per redundant OBC half; TTRM & PM
- \Box TTRM = TM, TC, RM & MM:
 - Telecommand (TC)
 - Telemetry (TM)
 - □ Reconfiguration
 - Small Mass Memory
 - Two ASICs: CROME and HAMSTER
- PM = Processing Module:
 - LEON Processor
 - Control interfaces: MIL-STD-1553, SpaceWire, UART...
 - One ASIC: COLE
 -] Power board with High Priority Commands

SBCC OBC Concept

One digital board per redundant half

Combines and extends the functionality of the previous TTRM and PM boards

One System-on-a-Chip ASIC: CREOLE

Single board benefits

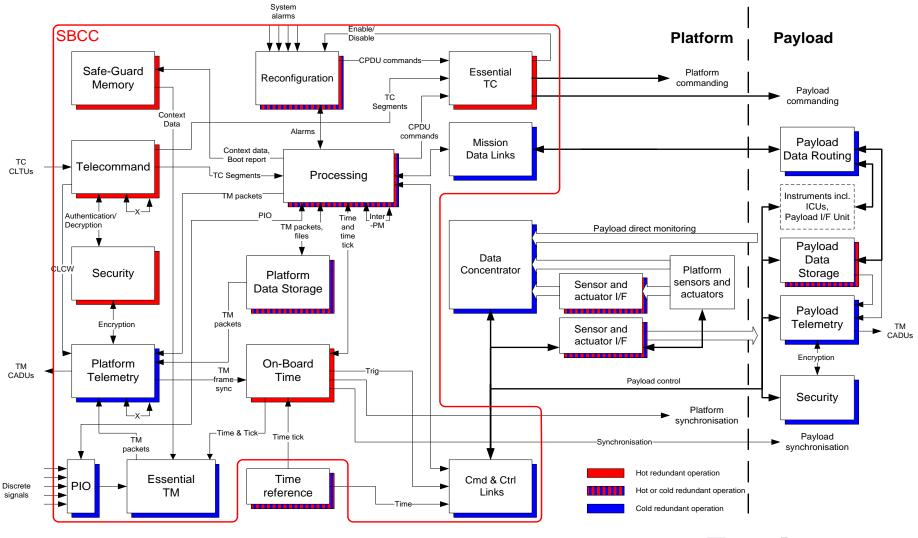
Reduced cost due to fewer components and lower manufacturing cost

Less weight & volume

Lower Power Consumption due to higher integration

One power board per redundant half

Includes interfaces for High Priority Commands and Synchronisation signals


SBCC OBC Concept, cont'd

- Compliant with SAVOIR Avionics System Reference Architecture (ASRA) Generic OBC Specification
- Support for On-board Software Reference Architecture (OSRA) and IMA/TSP
- Support for non-volatile Data Storage and prepared for CCSDS File Delivery Protocol (CFDP)
- Software interface has been kept as intact and compatible as possible
- Prepared for increasing performance significantly through additional add-on processor connected through high-speed serial link, such as the next generation Micro-Processor (NGMP), or Field Programmable Gate Array (FPGA) for hardware acceleration

Results at end of SBCC Phase 2

- □ SBCC development has been divided into three separate phases
- Results at end of Phase 2:
 - Consolidated SBCC system concept and architecture
 - □ Single Board Computer Core development board with standard OBC interfaces and CREOLE baseline design implemented in an FPGA
 - □ New and enhanced functionality, with corresponding driver software
 - CREOLE flight design ready for ASIC implementation
 - □ Verification through simulation at module and chip level
 - □ Validation at System-on-Chip level in FPGA
-] Final Phase 3 result is validated CREOLE ASIC on SBCC board

SBCC Functionality

SBCC Functionality, cont'd

] Standard Interfaces:

- CCSDS Packet Telecommand and Packet Telemetry
 - □ Includes both Essential TC and Essential TM
- Legacy MIL-STD-1553 and CAN
- A large number of Deterministic SpaceWire interfaces with Time Codes
- Synchronisation signals with programmable output frequencies

Core functionality

- Processing with FDIR support by a Reconfiguration Unit
- Flexible Encryption and Authentication implementation, also supporting external Encryption/Authentication units
- On-Board Time handling and Synchronization
- Non-volatile Mass Memory
- Merging of memory buses, oscillators & reset management reduces external component count Together

ahead. **RUA**

SBCC Functionality, cont'd

] Software aspects:

- LEON processing
- ☐ Large memory sizes can be accommodated
- ☐ Hardware support reducing processor response times for interfaces
- Ethernet-based Enhanced Debug Support Unit with real-time tracing capability, with corresponding LEON Tools suite for efficient software development
- Maintaining SW as compatible as possible reduces cost for software redevelopment by customers
- ☐ Flexibility and Scalability
 - □ Network on Chip for extendibility and flexibility
 - Add-on powerful processor or FPGA

Multi Functional Core (MFC) Breadboard

-] Prototype development FPGA board used for SBCC validation
- **Standard OBC interfaces**
 - TM, TC, Alarms, some IO
 - 🗌 MIL-STD-1553, CAN
 - □ SpaceWire
- NGFP Add-on Processor Mezzanine
- Mezzanine connectors for functional growth & expansion
- Enhanced debug support unit with Ethernet connection
- Used by a large number of projects

Summary

- RUAG Space is on track for the next generation single board computer incorporating the functionality of current OBCs
- New and extended functionality in line with the needs of future SAVOIR, OSRA, CFDP based missions; including extensive modern SpaceWire connectivity with flexibility and extendibility, non-volatile Data Storage, scalability through add-on processing
- Maintaining the software interface and enhanced debug support facilitates software adaptation
- Integration driven approach and large team for record-breaking short development: 12 months instead of contractual 18 months
- Phase 3 work such as extra tests started while waiting for kick-off
- OBC-NG EQM foreseen early 2018, in line with schedule for next Science and Earth Observation missions

Together ahead. RUAG

Thank you for your attention!

