DNV-GL

MATTS —
Model-Based Testing of Spacecraft On-board Software

Final Presentation

1 DNV GL © 2015 MATTS-PRE-DNV-105, rev. 1.2 SAFER, SMARTER, GREENER

The starting point

Previous studies performed by DNV GL for ESA shows
that transfer of a set of software requirements
originally written in prose into different forms of
formal models, implies valuable early stage
validation, in particular related to evaluating the
completeness of requirements.

The previous studies have also shown that the
formalisation process is a labour intensive exercise,
and therefore the model should be used for more
than specification, verification and validation of
requirements, to regain costs.

Therefore this project has investigated formalisation
through the Sequence Based Specification (SBS)
methodology in combination with Model Based Testing
(MBT).

2

DNV GL © 2015 2015-06-02

DNV-GL

The team

Jingyue.Li and Jing.Xie

— DNV GL Strategic Research and Innovation, Hgvik, Norway

Hans-Juergen.Herpel

— Airbus Defence and Space, Friedrichshafen, Germany

Sabine Krueger

= Systems Analysis and Consulting, Munchen, Germany

Bengt.Solheimdal.Johansen and Kenneth.Kvinnesland

= Security and Information Risk Management DNV GL, Hegvik, Norway

Pedro Barrios
= ESA Technical Officer

3 DNV GL © 2015 2015-06-02 DNV-GL

Project Activities and Split of Work

Airbus Defence & Space

DNV GL
Markov G t
. enerate
Make SBS , S »l abstract
models | usage ' test
ke est cases
Generate Test case
, bl » executed . Analyse
» executable test results
test cases on SVF

4 DNV GL © 2015 2015-06-02

DNV-GL

SBS — Introduction

O What techniques /
Requirements

Markov chain usage model
is a finite-state machine

whose output values are
does the SBS use? determined both by its
M current state and the
- Segquence enumeration for - current inputs.)
]] o Seqguence- T
iteratively deriving a formal | based linput2, output2]
ification from Sgegﬂcation -
Specitica B M '
bec n o < | o
requirements written in Benh ool
Markov chain % [input3, output3]
natural language usage model ‘w
_ (MCUM) : :
- Sequence abstraction for - = =2 >

controlling the growth of the \
enumeration process

O What does the SBS
provide?

- A systematic way to explore
and discover the intended
system behaviour in
consistent, complete and
traceably correct manner

5 DNV GL © 2015 2015-06-02 DNV-GL

Example: Alarm software

6 DNV GL © 2015 2015-06-02 DNV-GL

SBS process executable steps

d Alarm software specification

ﬂAlannSm
File Edit Enumeration Help

ApdeARDE

Ifamsbkersmadewhenmta'mhemde,ti'leusernmstpressﬂweclearbuttonbeforehemdembereentered.

D1 The security alarm is initially deactivated.

D2 After the device has been set, the Set button has no further effect until the device has been deactivated.

D3 The device produces no external response to an erroneous entry.

D4 The device produces no response to a Clear entry.

D5 The device produces to external response to correct entry of the code until all three digits of the code have been entered.

D6 After the trip signal has set off the alarm, the trip signal has no further effect until the device has been deactivated.

D7 Incomplete entry of the code prior to a trip signal will be regarded as an erroneous entry that requires a Clear and a reentry of the correct code to deactivate the alarm.

7 DNV GL © 2015 2015-06-02 DNV-GL

SBS process — Step 1

Step 1. ldentify the boundary of the system under
modelling and define human/software/hardware
iInterfaces

System boundary | Stimuli I Response | Grouped response | Predicate I Sequence Enumeration CancncalSemence‘
Interface Interface description Reguirement trace

Alarm The alarm speaker used to generate the alarm sound. [4]
Key Pad The key pad where the user enters the code and arms ... [7,6,5,2]
Trip Wire The detector that sets off the alarm, if armed. [4,1]

8 DNV GL © 2015 2015-06-02 DNV-GL

Alarm software specification

ﬂAIarmSw;

File Edit Enumeration Help

AedesDdE

Requirements |System boundary | Stinii | Response | Grouped response | Predicate | Sequence Enumeration | Canonical Sequence O UIMUI

Requirement
The security alarm has a detector that sends a trip signal
Thesemtvalarmnsacﬂvatedbypresmgme&tbu ton,

The Set button i€Gluminatedwherr thersecurity alari(se Responses
Ifatnpsnmalom.rsmﬂe 2earity alarm is set; 3 hig -pttdwedtone(alam is epritted:

CEthvee 0ot cogp st be entered-toin off the darmxode.

Correct entry of the code deactivates the security alarm.

If €qistake is madehen entering the code, the user mustQess the Clegdbutton before the code can be reentered,

The security alarm is initially deactivated.

After the device has been set, the Set button has no further effect until the device has been deactivated.

The device produces no external response to an erroneous entry.

The device produces no response to a Clear entry.

The device produces to external response to correct entry of the code until all three digits of the code have been entered.

After the trip signal has set off the alarm, the trip signal has no further effect until the device has been deactivated.

Incomplete entry of the code prior to a trip signal will be regarded as an erroneous entry that requires a Clear and a reentry of the correct code to deactivate the alarm.

9

DNV GL © 2015 2015-06-02 DNV-GL

SBS process — Step 2 & Step 3

Step 2: ldentify all possible stimuli

Iquiunents I System boundary | Stmuli | Response |G'o|.pedremonse | Predicate]km&u‘n&aﬁm ICath:lSeqm}
Stimuli Name Stimuli description Source Requirement trace
BadDigit The user has entered a number that is not part of the alarm disarming code. [Key Pad] 7
Clear The user has pressed the Clear button on the keypad. [Key Pad] A
GoodDigit The user has entered the correct next digit of the alarm disarming code. [Key Pad] [6,5]

Set The user has pressed the Set button on the keypad. [Key Pad] [2]
Trip Something has tripped the alarm detector. [Trip Wire] [1]

Step 3: Identify all possible system responses
| Requirements | System boundary | Stimuli | Response | Grouped response | Predicate | Sequence Enumeration | Canonical Sequence |

Response Name Response description Destination Requirement trace
Alarm Off The high-pitched alarm sound has been turned off, [Alarm] [5]

Alarm On The high-pitched alarm sound has been activated. [Alarm] [4]

Light Off The Set button light has been turned off. [Key Pad] [6]

Light On The Set button light has been turned on. [Key Pad] [3]

Null No response 0 0

10 DNV GL © 2015 2015-06-02 DNV-GL

SBS process — Step 4

Step 4. Enumerate seqguences of stimuli and assign responses
to each segquence

—
 Requirements | System boundary | Stimul | Response | Grouped response | Predicate | Sequence Enumeration | Canonical Sequence |
Length Prefix Stmulus Predicate Predicate value Response Legal Equivalence Requirement Trac
1 Lambda Set [LightOn] Yes — [2.3]
Sadat il = == I
Set Clea Ml ves C st D P4
2 Set GoodDigit T Yes s ;
2 Set Set [Null] Yes Set D32
2 Set Trip [AlarmOn] Yes - [1.4]
3 Set.BadDigit BadOwgit Ml Yes Set.BadDigit [D3)
3 Set.BadDigit Clear [l Yes Set 04,7
3 Set.BadDigit Set [hull] Yes Set.BadDigit D2
3 Set.BadDigit Trip [Alarm On] Yes - [1,4]
3 "Set. GoodDIgH BadOgit TRt] Yes Set.BadDigit D3]
3 Set.GoodDigit Clear [Null] Yes Set 4]
3 Set.GoadDigit GoodDinit [l Yes - [Ds5]
3 Set.GoodDigit Set [Nuill] Yes Set.GoodDigit D27
3 Set.GoodDigit Trip [Alarm On] Yes Set.BadDigit.Trip [D7]
3 Set.Trip BadDigit [huill) Yes Set.BadDigit.Trip [D3] =
11 DNV GL © 2015 2015-06-02 DNV-GL

SBS process — Step 4 (Cont.)

| Requirements | System boundary | Stimuii | Response | Grouped response | Predicate | Sequence Enumeration | Canonical Sequence |
Length Prefix Stimulus Predicate Predicate value Response Legal Equivalence Requirement Trace
3 Set.Trip Clear [Null] Yes Set.Trip D4
3 Set.Trip GoodDigit [Null] Yes - [DS]
3 Set.Trip Set [Nuil] Yes Set.Trip 2]
3 Set.Trip Trip [Null] Yes Set.Trip [D6]
4 Set.BadDigit. Trip BadDigit [Null] Yes Set.BadDigit.Trip [D3]
4 Set.BadDigit. Trip Clear [Null] Yes Set.Trip 04,7
- Set.BadDigit. Trip Set [Null] Yes Set.BadDigit.Trip [D2]
B Set.BadDigit. Trip Trip [Nuil] Yes Set.BadDigit. Trip [D6]
- Set.GoodDigit. GoodDigit BadDigit [Null] Yes Set.BadDigit D3]
B Set.GoodDigit. GoodDigit Clear [Null] Yes Set 03]
4 Set.GoodDigit. GoodDigit Set [Nuil] Yes
- Set.GoodDigit. GoodDigit Trip [Alarm On] Yes
B Set. Trip.GoodDigit BadDigit [Null] Yes
- Set. Trip.GoodDigit Clear [Null] Yes
3 Set. Trip.GoodDigit GoodDigit [Null] Yes
4 Set. Trip.GoodDigit Set [Null} Yes
4 Set. Trip.GoodDigit Trip [Null] Yes
5 Set. Trip. GoodDigit. GoodDigit BadDigit [Null] Yes
5 Set. Trip.GoodDigit. GoodDigit Clear [Null] Yes
5 Set.Trip. GoodDigit. GoodDigit GoodDigit [Light Off Yes
5 Set. Trip. GoodDigit.GoodDigit Set [Null] Yes
5 Set. Trip.GoodDigit.GoodDigit Trip [Nuil] Yes

12 DNV GL © 2015 2015-06-02

DNV-GL

SBS process — Step 5

Step 5. Perform canonical sequence analysis

- A canonical sequence

_ * is a legal sequence that is not
Qambda > < A special state equivalent to earlier sequence.

g * represents a unique state of the system.
Set.BadDigit

Set.GoodDigit _ _ _

SetTrp | - The stimuli enumeration process
Set,BadDigit. Trip represents a process of creating a
Set.GoodDigit. GoodDigit Markov chain usage model (MCUM).
Set. Trip. GoodDigit

Set, Trip. GoodDigit. GoodDigit - The states of the MCUM are

determined by the canonical
seguences.

13 DNV GL © 2015 2015-06-02 DNV-GL

SBS process — Step 6

Step 6. Black box specification — represent canonical
seguences using variables

Canonical Sequence Table 1. Variables and their values
Lambda Variable Possible values
Set Alarm “NotApplicable”, “OFF”, “ON”
Set.BadDigit Code “NONE”, “NotApplicable”, “ERROR”, “2_0OK”, “1_OK”
Set,GoodDigit Device “NotApplicable”, “OFF”, “ON”
Set.Trip
Set.BadDigit, Tri))
Set G dg 'trr;pood[ﬁgt Table 2. Canonical sequences represented by variables
.GoodDigit.
Set Trip GoocDigit Canonical sequence Alarm Code Device
: R Lambda NotApplicable | NotApplicable | OFF
Set. Trip.GoodDigit. GoodDigit Sot OFF NONE ON
» Each canonical sequence corresponds Set.BadDigit OFF ERROR ON
to a unique MCUM state which is a Set-GooDigit OFF 10K ON
combination of variable values. setTrip _ ON NONE ON
« Defining variables is a manual task. Set.GoodDigit.GoodDigit OFF 2_OK ON
Set.BadDigit.Trip ON ERROR ON
Set.Trip.GoodDigit ON 1 OK ON
Set.Trip.GoodDigit.GoodDigit | ON 2 OK ON

14 DNV GL © 2015 2015-06-02 DNV-GL

Markov chain model of the alarm software

[Set, null]

[Clear, null]
ALARM=OFF, CODE=NONE,
DEVICE=OFF

Stimulus Response

[GoodDigit, null]

[set, Light-o

BadDigit, null]
[Clear, null]

ALARM=n/a, CODE=n/a,
DEVICE=0OFF

ALARM=OFF, CODE=2_0K, DEVICE=0ON

[Clear

ALARM=OFF, CODE=ERROR,
DEVICE=ON

[GoodDigit, null]

[BadDiy

ALARM=0ON, CODE=2_OK, DEVICE=0ON
[BadDigit, null]

[Trip, Alarm-on]

[Trip, Alarm on]

ALARM=OFF, CODE=1_0OK,

Set, null]

[GoodDigit, null]
[Trip, Alarm-

ALARM=ON, CODE=NONE, [BadDigit, null]

DEVICE=ON

ALARM=ON, CODE=ERROR,
DEVICE=ON

ALARM=0ON, CODE=1_OK, DEVICE=ON
[GoodDigit, null]

15 DNV GL © 2015 2015-06-02

DNV-GL

Predicates

= A predicate represent a stimulus that can be expressed in
form of a regular expression rule. @

= In terms of SBS, predicates are typically used for the

following purposes: (o) (=)

— To increase abstraction level, i.e. conditions resulting from

specific sequences of detailed stimuli can be modelled as () (2 o
one single predicate having a limited number of possible
predicate values, such as true/false o °

— To define pre-conditions, i.e. the predicates reflect stimuli
set outside the border of the model and therefore the
predicate value is considered constant.

= More abstract stimuli in form of predicates can be used to
reduce the depth and complexity of the SBS model, and can
also be used to decompose the model into sub-models where
one or more of the states of the sub-models are predicates in
the higher level model.

16 DNV GL © 2015 2015-06-02 DNV-GL

Testing based on SBS outputs

J Each arc of the MCUM can be annotated with

- its single-step transition probability (based on usage or use even probability)

- how critical the transition is (i.e. weight of the transition)

 Test cases can be generated based on different strategies
— Coverage of each state and each arc (i.e. all state transition rules)
— Randomly selected based on assigned probabilities/weight

— Basis path coverage (all combinations of paths only possible if there are no
loops and the state machine is not too complex)

17 DNV GL © 2015 2015-06-02 DNV-GL

Combining SBS and MBT in the MATTS project

MBT

[JUMBL |—

-~

Test model

T

Abstract test

SBS- SBS
Supet
|
Requirements \ =270\
(SRS and SSS) " — Create SBS
) model
Sequence-basedFE=—F—
specification _ Generate
< b= state
S % Machine
tate ‘
machine Give
single-step
Annotated probability
State Machine %‘ to every
(MCUM) arc of the

-

State
machine

<= ||anual

CONVAC-TC

cases

.

<'7<:-

Generate abstract test
cases covering all
transitions/arcs of the

MCUM

~

/

Concrete
test case

Map the abstract
stimulus, predicate, and
response to test script
libraries that send actual
signals and read

Test results

"“./"" S | vdarlridoles.
/%/ _ﬁf }“Emh X R
e | = Run test
Test oracles Q : T cases and
] compare
S :’j the results
P~ e with test
| oracles

/

<=—= Automated

<— Manual/Automated

=3

18 DNV GL © 2015 2015-06-02

DNV-GL

Selecting functions for SBS modelling

0 Scope of SBS modelling
- Central Software of a satellite: V1 & V2

O Criteria for selecting candidate functions
- State machine oriented

- Have a fairly complex combination of input sequences

U Requirement classification for SBS modelling
- Cannot be modelled
- Relevant but too simple for SBS

- Relevant and worth modelling

19 DNV GL © 2015 2015-06-02 DNV-GL

Functions that were modelled

O Thermal Control (TCS)

O Power Control and Distribution Unit (PCDU)

O Attitude and Orbit Control System (AOCS) mode management
d Mass Memory Management (MMM)

O Mass Memory and Formatting Unit (MMFU) management

O On-board Time (OBT) management

Data Platform Payload
system| | AOCS Handling TCS

OBT MMFU

PCDU
MMM

20 DNV GL © 2015 2015-06-02 DNV-GL

Summary of the requirement classification results

Total Percentage
Total number of V1 and V2 requirements 1908 100%
Cannot be modelled 753 39%
Relevant but too simple for SBS 346 18%
Relevant and worth doing 809 42%
Selected candidates for modelling, ref.
prioritized list 224 12%

21

DNV GL © 2015 2015-06-02

DNV-GL

Classification of requirements not suitable for modelling

= Specify TC, TM or PUS Service (29%): Requirements that specify
which PUS Services are allocated to the specific functionality and
should be instantiated.

= Data management (28%): Requirements related to data
management, e.g. requirements specifies data format and the
place to store data.

= Implementation (33%): Requirements that specifies the detailed
iImplementations. An example requirement is “The CSW shall call
the function X at a rate of 1 Hz to ensure that the packets are
written to the packet stores with the correct storage time”.

= Performance (9%): Requirements related to real time performance.
An example requirement is “The module X shall process all M
control loops within N seconds”.

= Continuous mathematical model (2%): Requirements that are
related to responses with continuous values. An example
requirement is “the module X shall implement the following
algorithm Y”. The algorithm Y is a mathematical model that
calculates magnetic torque

22 DNV GL © 2015 2015-06-02 DNV-GL

The test case generation tool - JUMBL

U The Java Usage Model Builder Library (JUMBL) have been made by the
Software Quality Research Laboratory of the University of Tennessee.
http://sgrl.eecs.utk.edu/esp/jumbl.html.

U The Model Language (TML) was used to import the MCMUM from the
SBSsuper,

- No further adaption was needed at JUMBL level.
U A generated test case represent a path of Arcs in the MCUM:
- For n states, the number of possible state transitions equals n?
- Each Arc in the MCUM represent a unique state transition rule/criteria

- As there may be more than one transition rule/criteria per possible state
transition, the number of Arcs may in some cases be significantly larger
than n?

L JUMBL currently supports 4 strategies for test case generation.

Generate a set of test cases which visit every arc in an MCUM at least once

Generate a set of test cases randomly based on the probability of each arc

Generate weighted test cases in order by weight

Generate test cases manually in order to meet specific test requirements

23 DNV GL © 2015 2015-06-02 DNV-GL

Process for test case definition to test execution
and result analysis

V&V Plan B
SW Dev. Plan

v

Reguirements Analysis

Reau Design B
equi remenﬁ I Documents

I
47 Test Design B

Validation Test

* Abstract Test Madel / > Specification &
test cases Test Plan B Step 2 Software iesign Datd

‘é? Test Impl. & Execution
» Validation test specification
——p| Test Proceduresﬁ I
» Set of basic test functions Step 3
» Data dictionary
\47 Test Evaluation & Reporting

» Test configuration

Log Files BH
+ Test procedure sheets Step 4

» Sequences of test steps \47

s L

24 DNV GL © 2015 2015-06-02 DNV-GL

Step 2 Test design process

Design B
Documents

Test Design

25 DNV GL © 2015

é? Data (:}
Dict —>
(‘3 I Test B r Test Plan / ictionary Data
T Model Model Analysis Software B Dictipnary
st 4D .
Mckel Design Data
‘3 B Test Plan B iy % Basic Test IE y ()
FS Step 2 = 1 Functions Balsic
19 Test Case Design Test
é? Func.
Validated B
(Augmented) B - Step 2.2 P TeststepLib
Test Cases
) Test IE ()
J? Test Procedure Design Configuraticns _[}Tpst
Validation Testm I Config.
Plan Step 2.3
Validation Test ()
Specification Validatien Test
Specification
Test IE iy
Procedures Thst
Procgdure
2015-06-02 DNV-GL

~Step 2.1 Map test model flles to SPPS data model

JUMBL Output Augmented DataModel
CS8V files
Basic TestFunctions
Predicates Predicates -
s 1’1\
~ e Mapping
'-.__“ |
S
Stimuli stimuli —— s '
- = TestStepLibrary
Responses Responses -7 J//x’
J'/’
StateVariables StateVariables -7
Test Steps TestSteps 1> ———— — ——— = = TestProcedures
PrOJact Documentation Pre_Pmcessing Requirements N _IMFEBT_ J— REqUi rements
Sss BRIDSE . PRIDs
SRS soP s ——— = SW DataPool
SUM FunctionRef |- — — — — — — — Function IDs
FailureRef | — = 2 ElDs
PUS
PUS Def. = — ————_——_— PUS Definition
DataDictionary ——s — — — — — — — — = DataDictionary
N 0/
h.
26 DNV GL © 2015 2015-06-02 DNV-GL

Step 2.2 Test case design

J Map abstract test steps derived from the SBS elements (i.e.

stimuli, predicates, responses and state variables) to sequences
of valid PUS and/or SIF commands

1. Ildentify common functions among the abstract test steps
2. Refine the identified functions by defining the sequence of commands

3. Assign basic functions to items of the test step library

Examples of basic test functions

Test function Used in Test Steps

checkAOCSState (mode, submode, sa_status)

checkPUSResponse (sst, ecode)

getSDP (pidl, vall)

setFunctionByID (RID, Paraml1, Param2, Param3, Param4)

checkTCSState (tsw_status, TMTID, TCTLinelndex, T_min, T_max,

glb_status)

21
52
52
59
19

27 DNV GL © 2015

2015-06-02

DNV-GL

Step 2.3 Test procedure design

] Abstract test steps derived from the SBS models using JUMBL
are converted into executable test steps.

[One abstract test step may be converted into several executable
steps.
- E.g.: One abstract test step may contain several responses which need to be

checked against test oracles using several executable steps.

28 DNV GL © 2015 2015-06-02 DNV-GL

Step 3 Test execution

J A Test Procedure consists of the Test Procedure Sheet and an
executable file.

 The procedure to run a test is
1. Select one test from the test tree by clicking on the name

2. Select the corresponding test procedure and check if all relevant information is
provided.

3. Execute the following activities:
* Pre conditions: activities to be performed before a test script can be executed.

* Test execution: activities to start the test and observe the output produced by
the test script.

¢ Post conditions: activities to be performed when a test script finished
execution.

29 DNV GL © 2015 2015-06-02 DNV-GL

Cost-effectiveness of making SBS models

 In general, 70% of the effort was spent understanding the
domain and 30% was spent on filling the data.

- An iterative process to update the SBS model if
- Adding requirements
- Deleting requirements

- Updating requirements

Function Man-hours spent on Man-hours spent on updating the SBS
making the SBS model | model

AOCS Mode management 51 16
Thermal Control 60 16
PCDU 60 28
OBT management 42 35
MMM 86 35
MMFU management 8 10

Sum 307 140

30 DNV GL © 2015 2015-06-02 DNV-GL

Time and effort and fault finding effectiveness

Analysis of Thermal
time & effort Control

Adapt test script 26.4 37.4 19.8 15.4 6.6 114.4
to SVF

Test execution 1.2 1.7 0.9 0.7 0.3 52
(10h/run)

Result analysis 9.6 13.6 7.2 5.6 2.4 41.6
Cost e Low Medium Medium Medium Medium Low
effectiveness

Requirements 0.1 04 0.4 0.4 04 0.2
model/Zhr

#Requirements 0.3 0.9 1.5 1.6 1.5 0.2
test/hr

#RIDs found 0 3 0 3 2 7

= All RIDs delivered in the modelling phase

= No RIDs delivered in the testing phase (very mature software)

31 DNV GL © 2015 2015-06-02 DNV-GL

Main challenges faced in the project

= Terms used to represent control system stimuli and
responses at requirements level are not the same as the
ones used to represent inputs and outputs at code level.

— Thus a considerable effort had to be used to create a
manual mapping between information at the two levels

= Prerequisites in terms of system and software state and a
specific configuration of the SVF and the on-board
software parameters are required for the respective test
cases, as otherwise the tests may fail.

— Relevant information is often not present in the
specification.

— Thus with the current type of specification, on-board
software expert knowledge is required for effective
testing of a satellite.

32 DNV GL © 2015 2015-06-02 DNV-GL

SVF capabilities

In this project Airbus DS has been able to extend an
existing test environment, thus the need to develop
new test code was relatively limited

In the near future, combining SBS with MBT is
considered most relevant for an organisation that
can reuse the same SVF in several projects.

— This is mainly because it is necessary to
overcome the challenges identified in the
previous slide

= Building a test environment for a single project
specific SVF to be used for both nominal V&V and
ISVV may require more standardisation before it
IS economically viable.

Desktop Computer

TEST FRONTEND

TEST BACKEND!

[TEST ADAPTE|

<virtual execution env.>:
On-Board Computer

SVF

1
|
I
I
I
|
|
I <<device>>
I
I
|
|
I
I

Update Test E{(ecutlnn| Status

<<device>>
LAN Switch

<<DESIGN support execution environment>>

Server

SPPS

TEST
SUPPORT

| Channel, ——-F—--

T o

SPPS
<<component>>
SPPS Applic

33 DNV GL © 2015 2015-06-02

DNV-GL

Compliance with ECSS software standards and ESAs guide to ISVV

= SBS can be used for requirements specification, verification and o
validation both in nominal software development and for ISVV. -
— For those requirements where all aspects are modelled, full

requirements test coverage is obtained and traceability can be
demonstrated.

= Method must be complemented by manual inspection and also
other forms of modelling, testing and analyses since:

— There are many types of requirements that are not relevant to
model with SBS

— There are a number of V&V related requirements in relevant
standards and guidelines that are not covered by this method

— E.g. using the current tool chain, we will for each state
transition rule/criteria just pick one equivalence class value of
the relevant stimuli without exercising the possible other
values, such as boundary values.

34 DNV GL © 2015 2015-06-02 DNV-GL

Main benefits

= Improved early validation

— Formal specifications with clear completeness
criteria will reveal omissions in the requirements
specifications at an early stage.

= Improved specifications

— The state machines generated through the SBS
methodology may be more detailed, and also
different, compared to the ones explicitly expressed
in the specifications.

— State machines may be fed into the development
process

= Improved testing

— tests generated from the SBS model may be more
thorough when it comes to testing of state machine
oriented functionality, compared to manually
developed test

— No effort spent in selecting and designing test cases

35 DNV GL © 2015 2015-06-02 DNV-GL

Future improvements

= Potential improvement in SBSsuper tool and Open
Source Tool JUMBL

— Improved support for test of timing related properites

— Support for exercising all equivalence classes of a
given parameter per state transition rule

— Support for basis path coverage
= Standardisation at specification and SVF level

— Defining a domain-specific dictionary may avoid part of
rework for generating executable test case.
— Investigate how cost-efficient and unambiguous

software requirements should be specified in order to
automatically generate executable test cases.

36 DNV GL © 2015 2015-06-02 DNV-GL

www.dnvgl.com

SAFER, SMARTER, GREENER

37 DNV GL © 2015 2015-06-02 DNV-GL

	MATTS – �Model-Based Testing of Spacecraft On-board Software
	The starting point
	The team
	Project Activities and Split of Work
	SBS – Introduction
	Example: Alarm software
	SBS process executable steps
	SBS process – Step 1
	Alarm software specification
	SBS process – Step 2 & Step 3
	SBS process – Step 4
	SBS process – Step 4 (Cont.)
	SBS process – Step 5
	SBS process – Step 6
	Markov chain model of the alarm software
	Predicates
	Testing based on SBS outputs
	Combining SBS and MBT in the MATTS project
	Selecting functions for SBS modelling
	Functions that were modelled
	Summary of the requirement classification results
	Classification of requirements not suitable for modelling
	The test case generation tool - JUMBL
	Process for test case definition to test execution and result analysis
	Step 2 Test design process
	Step 2.1 Map test model files to SPPS data model
	Step 2.2 Test case design
	Step 2.3 Test procedure design
	Step 3 Test execution
	Cost-effectiveness of making SBS models
	Time and effort and fault finding effectiveness
	Main challenges faced in the project
	SVF capabilities
	 Compliance with ECSS software standards and ESAs guide to ISVV
	Main benefits
	Future improvements
	Slide Number 37

