
DNV GL © 2015 2015-06-02 SAFER, SMARTER, GREENER DNV GL © 2015 MATTS-PRE-DNV-105, rev. 1.2

2015-06-02

MATTS –
Model-Based Testing of Spacecraft On-board Software

1

Final Presentation

DNV GL © 2015 2015-06-02

The starting point

 Previous studies performed by DNV GL for ESA shows
that transfer of a set of software requirements
originally written in prose into different forms of
formal models, implies valuable early stage
validation, in particular related to evaluating the
completeness of requirements.

 The previous studies have also shown that the
formalisation process is a labour intensive exercise,
and therefore the model should be used for more
than specification, verification and validation of
requirements, to regain costs.

 Therefore this project has investigated formalisation
through the Sequence Based Specification (SBS)
methodology in combination with Model Based Testing
(MBT).

2

DNV GL © 2015 2015-06-02

The team

 Jingyue.Li and Jing.Xie

– DNV GL Strategic Research and Innovation, Høvik, Norway

 Hans-Juergen.Herpel

– Airbus Defence and Space, Friedrichshafen, Germany

 Sabine Krueger

 Systems Analysis and Consulting, München, Germany

 Bengt.Solheimdal.Johansen and Kenneth.Kvinnesland

 Security and Information Risk Management DNV GL, Høvik, Norway

 Pedro Barrios

 ESA Technical Officer

3

DNV GL © 2015 2015-06-02

Project Activities and Split of Work

4

Make SBS
models

Markov
chain
usage
models

Generate
abstract

test cases

Generate
executable
test cases

Test case
executed
on SVF

Analyse
test results

DNV GL

Airbus Defence & Space

DNV GL © 2015 2015-06-02

SBS – Introduction

 What techniques
does the SBS use?

- Sequence enumeration for
iteratively deriving a formal
specification from
requirements written in
natural language

- Sequence abstraction for
controlling the growth of the
enumeration process

 What does the SBS
provide?
- A systematic way to explore

and discover the intended
system behaviour in
consistent, complete and
traceably correct manner

 5

DNV GL © 2015 2015-06-02

Example: Alarm software

6

Alarm Software

DNV GL © 2015 2015-06-02

SBS process executable steps

 Alarm software specification

7

Interfaces

DNV GL © 2015 2015-06-02

SBS process – Step 1

Step 1. Identify the boundary of the system under
modelling and define human/software/hardware
interfaces

8

DNV GL © 2015 2015-06-02

Alarm software specification

9

Responses

Stimuli

DNV GL © 2015 2015-06-02

SBS process – Step 2 & Step 3

10

Step 2: Identify all possible stimuli

Step 3: Identify all possible system responses

DNV GL © 2015 2015-06-02

SBS process – Step 4

11

Step 4. Enumerate sequences of stimuli and assign responses
to each sequence

 - Eliminate equivalent sequences

DNV GL © 2015 2015-06-02

SBS process – Step 4 (Cont.)

12

DNV GL © 2015 2015-06-02

SBS process – Step 5

Step 5. Perform canonical sequence analysis

13

- A canonical sequence
• is a legal sequence that is not

equivalent to earlier sequence.
• represents a unique state of the system.

- The stimuli enumeration process
represents a process of creating a
Markov chain usage model (MCUM).

- The states of the MCUM are

determined by the canonical
sequences.

A special state

DNV GL © 2015 2015-06-02

SBS process – Step 6

Step 6. Black box specification – represent canonical
sequences using variables

14

• Each canonical sequence corresponds
to a unique MCUM state which is a
combination of variable values.

• Defining variables is a manual task.

Table 1. Variables and their values

Variable Possible values

Alarm “NotApplicable”, “OFF”, “ON”

Code “NONE”, “NotApplicable”, “ERROR”, “2_OK”, “1_OK”

Device “NotApplicable”, “OFF”, “ON”

Canonical sequence Alarm Code Device
Lambda NotApplicable NotApplicable OFF
Set OFF NONE ON
Set.BadDigit OFF ERROR ON
Set.GooDigit OFF 1_OK ON
Set.Trip ON NONE ON
Set.GoodDigit.GoodDigit OFF 2_OK ON
Set.BadDigit.Trip ON ERROR ON
Set.Trip.GoodDigit ON 1_OK ON
Set.Trip.GoodDigit.GoodDigit ON 2_OK ON

Table 2. Canonical sequences represented by variables

DNV GL © 2015 2015-06-02

Markov chain model of the alarm software

15

[Clear, null]

ALARM=n/a, CODE=n/a,
DEVICE=OFF

[set, Light-on]

Stimulus Response

[BadDigit, null]

[GoodDigit, null]

[Set, null]

[Trip, Alarm on]

[BadDigit, null]

[GoodDigit, null]

[Clear, null]

[Set,
null]

[Trip, Alarm-on]
[BadDigit, null]

[Clear, null]

[Set, null]

[Trip, Alarm-on]

[GoodDigit, null]

[GoodDigit, null]

[BadDigit, null]

ALARM=OFF, CODE=NONE,
DEVICE=OFF

ALARM=OFF, CODE=2_OK, DEVICE=ON

ALARM=OFF, CODE=ERROR,
DEVICE=ON

ALARM=ON, CODE=2_OK, DEVICE=ON

ALARM=ON, CODE=1_OK, DEVICE=ON

ALARM=ON, CODE=ERROR,
DEVICE=ON

ALARM=ON, CODE=NONE,
DEVICE=ON

ALARM=OFF, CODE=1_OK,
DEVICE=ON

DNV GL © 2015 2015-06-02

Predicates
 A predicate represent a stimulus that can be expressed in

form of a regular expression rule.

 In terms of SBS, predicates are typically used for the
following purposes:

– To increase abstraction level, i.e. conditions resulting from
specific sequences of detailed stimuli can be modelled as
one single predicate having a limited number of possible
predicate values, such as true/false

– To define pre-conditions, i.e. the predicates reflect stimuli
set outside the border of the model and therefore the
predicate value is considered constant.

 More abstract stimuli in form of predicates can be used to
reduce the depth and complexity of the SBS model, and can
also be used to decompose the model into sub-models where
one or more of the states of the sub-models are predicates in
the higher level model.

 16

DNV GL © 2015 2015-06-02

Testing based on SBS outputs

 Each arc of the MCUM can be annotated with
- its single-step transition probability (based on usage or use even probability)

- how critical the transition is (i.e. weight of the transition)

 Test cases can be generated based on different strategies
– Coverage of each state and each arc (i.e. all state transition rules)

– Randomly selected based on assigned probabilities/weight

– Basis path coverage (all combinations of paths only possible if there are no
loops and the state machine is not too complex)

17

S2 S3

S6

S5 S4

E1; 0.7

E2;

E3; 0.3

E4;

E5; 0.1

E6; 0.9

E7;

S1

E8;

0.4

0.6

1

1

DNV GL © 2015 2015-06-02

Combining SBS and MBT in the MATTS project

18

Map the abstract
stimulus, predicate, and
response to test script
libraries that send actual
signals and read
variables.

Manual
Automated

Manual/Automated

Requirements
(SRS and SSS)

Sequence-based
specification

State
machine

SBS SBS-
Super

Test results

Test oracles
Run test
cases and
compare
the results
with test
oracles

SVF

Give
single-step
probability
to every
arc of the
State
machine

Annotated
State Machine
(MCUM)

Generate abstract test
cases covering all
transitions/arcs of the
MCUM Abstract test

cases

MBT JUMBL

Concrete
test case

Test model

Create SBS
model

Generate
State
Machine

CONVAC-TC

DNV GL © 2015 2015-06-02

Selecting functions for SBS modelling

 Scope of SBS modelling
- Central Software of a satellite: V1 & V2

 Criteria for selecting candidate functions
- State machine oriented

- Have a fairly complex combination of input sequences

 Requirement classification for SBS modelling
- Cannot be modelled

- Relevant but too simple for SBS

- Relevant and worth modelling

19

DNV GL © 2015 2015-06-02

Functions that were modelled

 Thermal Control (TCS)

 Power Control and Distribution Unit (PCDU)

 Attitude and Orbit Control System (AOCS) mode management

 Mass Memory Management (MMM)

 Mass Memory and Formatting Unit (MMFU) management

 On-board Time (OBT) management

20

On-board central software

AOCS System

Payload

MMFU

…

Platform

TCS

…

PCDU

Data
Handling

OBT

…

MMM

DNV GL © 2015 2015-06-02

Summary of the requirement classification results

21

Total Percentage

Total number of V1 and V2 requirements 1908 100%

Cannot be modelled 753 39%

Relevant but too simple for SBS 346 18%

Relevant and worth doing 809 42%

Selected candidates for modelling, ref.
prioritized list 224 12%

DNV GL © 2015 2015-06-02

Classification of requirements not suitable for modelling
 Specify TC, TM or PUS Service (29%): Requirements that specify

which PUS Services are allocated to the specific functionality and
should be instantiated.

 Data management (28%): Requirements related to data
management, e.g. requirements specifies data format and the
place to store data.

 Implementation (33%): Requirements that specifies the detailed
implementations. An example requirement is “The CSW shall call
the function X at a rate of 1 Hz to ensure that the packets are
written to the packet stores with the correct storage time”.

 Performance (9%): Requirements related to real time performance.
An example requirement is “The module X shall process all M
control loops within N seconds”.

 Continuous mathematical model (2%): Requirements that are
related to responses with continuous values. An example
requirement is “the module X shall implement the following
algorithm Y”. The algorithm Y is a mathematical model that
calculates magnetic torque

22

DNV GL © 2015 2015-06-02

The test case generation tool - JUMBL
The Java Usage Model Builder Library (JUMBL) have been made by the

Software Quality Research Laboratory of the University of Tennessee.
http://sqrl.eecs.utk.edu/esp/jumbl.html.

The Model Language (TML) was used to import the MCMUM from the
SBSsuper,

- No further adaption was needed at JUMBL level.

 A generated test case represent a path of Arcs in the MCUM:

- For 𝑛 states, the number of possible state transitions equals 𝑛2

- Each Arc in the MCUM represent a unique state transition rule/criteria

- As there may be more than one transition rule/criteria per possible state
transition, the number of Arcs may in some cases be significantly larger
than 𝑛2

JUMBL currently supports 4 strategies for test case generation.

- Generate a set of test cases which visit every arc in an MCUM at least once

- Generate a set of test cases randomly based on the probability of each arc

- Generate weighted test cases in order by weight

- Generate test cases manually in order to meet specific test requirements

23

DNV GL © 2015 2015-06-02

Process for test case definition to test execution
and result analysis

24

Step 1

Step 2

Step 3

Step 4

• Abstract
test cases

• Validation test specification

• Set of basic test functions

• Data dictionary

• Test configuration

• Test procedure sheets

• Sequences of test steps

DNV GL © 2015 2015-06-02

Step 2 Test design process

25

Step 2.1

Step 2.2

Step 2.3

DNV GL © 2015 2015-06-02

Step 2.1 Map test model files to SPPS data model

26

DNV GL © 2015 2015-06-02

Step 2.2 Test case design

 Map abstract test steps derived from the SBS elements (i.e.
stimuli, predicates, responses and state variables) to sequences
of valid PUS and/or SIF commands

1. Identify common functions among the abstract test steps

2. Refine the identified functions by defining the sequence of commands

3. Assign basic functions to items of the test step library

27

Test function Used in Test Steps

checkAOCSState (mode, submode, sa_status) 21

checkPUSResponse (sst, ecode) 52

getSDP (pid1, val1) 52

setFunctionByID (RID, Param1, Param2, Param3, Param4) 59

checkTCSState (tsw_status, TMTID, TCTLineIndex, T_min, T_max,
glb_status)

19

Examples of basic test functions

DNV GL © 2015 2015-06-02

Step 2.3 Test procedure design

 Abstract test steps derived from the SBS models using JUMBL
are converted into executable test steps.

 One abstract test step may be converted into several executable
steps.
- E.g.: One abstract test step may contain several responses which need to be

checked against test oracles using several executable steps.

28

DNV GL © 2015 2015-06-02

Step 3 Test execution

 A Test Procedure consists of the Test Procedure Sheet and an
executable file.

 The procedure to run a test is
1. Select one test from the test tree by clicking on the name

2. Select the corresponding test procedure and check if all relevant information is
provided.

3. Execute the following activities:

• Pre conditions: activities to be performed before a test script can be executed.

• Test execution: activities to start the test and observe the output produced by
the test script.

• Post conditions: activities to be performed when a test script finished
execution.

29

DNV GL © 2015 2015-06-02

Cost-effectiveness of making SBS models

 In general, 70% of the effort was spent understanding the
domain and 30% was spent on filling the data.

 An iterative process to update the SBS model if
- Adding requirements

- Deleting requirements

- Updating requirements

30

Function Man-hours spent on
making the SBS model

Man-hours spent on updating the SBS
model

AOCS Mode management 51 16

Thermal Control 60 16

PCDU 60 28

OBT management 42 35

MMM 86 35

MMFU management 8 10

Sum 307 140

DNV GL © 2015 2015-06-02

Time and effort and fault finding effectiveness

 All RIDs delivered in the modelling phase

 No RIDs delivered in the testing phase (very mature software)

31

Analysis of
time & effort

AOCS Thermal
Control

PCDU OBT MMFU MMM

Adapt test script
to SVF

26.4 37.4 19.8 15.4 6.6 114.4

Test execution
(10h/run)

1.2 1.7 0.9 0.7 0.3 5.2

Result analysis 9.6 13.6 7.2 5.6 2.4 41.6

Cost
effectiveness

• Low Medium Medium Medium Medium Low

Requirements
model/hr

0.1 0.4 0.4 0.4 0.4 0.2

#Requirements
test/hr

0.3 0.9 1.5 1.6 1.5 0.2

#RIDs found 0 3 0 3 2 7

DNV GL © 2015 2015-06-02

Main challenges faced in the project

 Terms used to represent control system stimuli and
responses at requirements level are not the same as the
ones used to represent inputs and outputs at code level.

– Thus a considerable effort had to be used to create a
manual mapping between information at the two levels

 Prerequisites in terms of system and software state and a
specific configuration of the SVF and the on-board
software parameters are required for the respective test
cases, as otherwise the tests may fail.

– Relevant information is often not present in the
specification.

– Thus with the current type of specification, on-board
software expert knowledge is required for effective
testing of a satellite.

32

DNV GL © 2015 2015-06-02

SVF capabilities

In this project Airbus DS has been able to extend an
existing test environment, thus the need to develop
new test code was relatively limited

In the near future, combining SBS with MBT is
considered most relevant for an organisation that
can reuse the same SVF in several projects.

– This is mainly because it is necessary to
overcome the challenges identified in the
previous slide

 Building a test environment for a single project
specific SVF to be used for both nominal V&V and
ISVV may require more standardisation before it
is economically viable.

33

DNV GL © 2015 2015-06-02

 Compliance with ECSS software standards and ESAs guide to ISVV

 SBS can be used for requirements specification, verification and
validation both in nominal software development and for ISVV.

– For those requirements where all aspects are modelled, full
requirements test coverage is obtained and traceability can be
demonstrated.

 Method must be complemented by manual inspection and also
other forms of modelling, testing and analyses since:

– There are many types of requirements that are not relevant to
model with SBS

– There are a number of V&V related requirements in relevant
standards and guidelines that are not covered by this method

– E.g. using the current tool chain, we will for each state
transition rule/criteria just pick one equivalence class value of
the relevant stimuli without exercising the possible other
values, such as boundary values.

34

DNV GL © 2015 2015-06-02

Main benefits

 Improved early validation

– Formal specifications with clear completeness
criteria will reveal omissions in the requirements
specifications at an early stage.

 Improved specifications

– The state machines generated through the SBS
methodology may be more detailed, and also
different, compared to the ones explicitly expressed
in the specifications.

– State machines may be fed into the development
process

 Improved testing

– tests generated from the SBS model may be more
thorough when it comes to testing of state machine
oriented functionality, compared to manually
developed test

– No effort spent in selecting and designing test cases

35

DNV GL © 2015 2015-06-02

Future improvements

 Potential improvement in SBSsuper tool and Open
Source Tool JUMBL

– Improved support for test of timing related properites

– Support for exercising all equivalence classes of a
given parameter per state transition rule

– Support for basis path coverage

 Standardisation at specification and SVF level

– Defining a domain-specific dictionary may avoid part of
rework for generating executable test case.

– Investigate how cost-efficient and unambiguous
software requirements should be specified in order to
automatically generate executable test cases.

36

DNV GL © 2015 2015-06-02

SAFER, SMARTER, GREENER

www.dnvgl.com

37

	MATTS – �Model-Based Testing of Spacecraft On-board Software
	The starting point
	The team
	Project Activities and Split of Work
	SBS – Introduction
	Example: Alarm software
	SBS process executable steps
	SBS process – Step 1
	Alarm software specification
	SBS process – Step 2 & Step 3
	SBS process – Step 4
	SBS process – Step 4 (Cont.)
	SBS process – Step 5
	SBS process – Step 6
	Markov chain model of the alarm software
	Predicates
	Testing based on SBS outputs
	Combining SBS and MBT in the MATTS project
	Selecting functions for SBS modelling
	Functions that were modelled
	Summary of the requirement classification results
	Classification of requirements not suitable for modelling
	The test case generation tool - JUMBL
	Process for test case definition to test execution and result analysis
	Step 2 Test design process
	Step 2.1 Map test model files to SPPS data model
	Step 2.2 Test case design
	Step 2.3 Test procedure design
	Step 3 Test execution
	Cost-effectiveness of making SBS models
	Time and effort and fault finding effectiveness
	Main challenges faced in the project
	SVF capabilities
	 Compliance with ECSS software standards and ESAs guide to ISVV
	Main benefits
	Future improvements
	Slide Number 37

