AGGA-4 Final Presentation

Presented by:

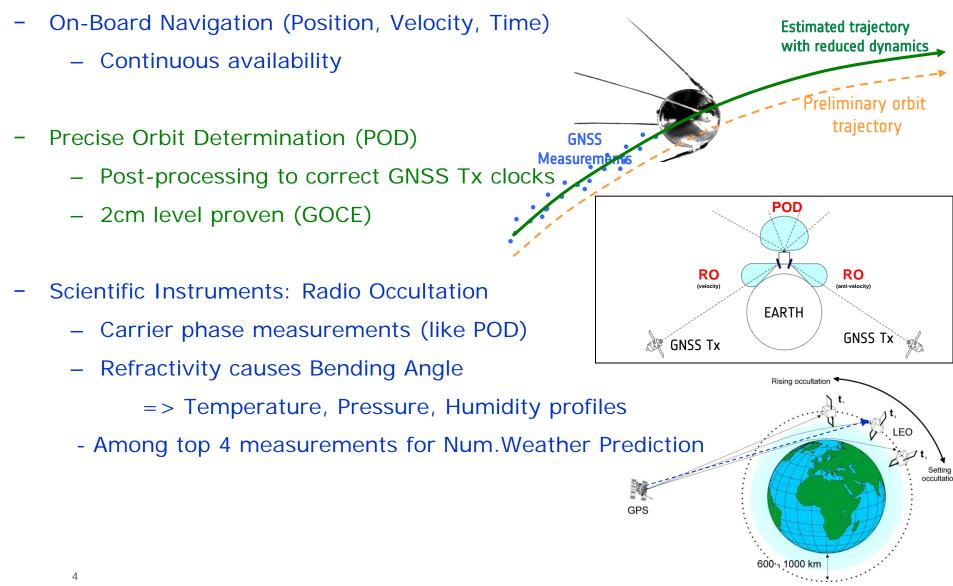
Josep.Roselló@esa.int

Earth Observation Programme Directorate European Space Agency Keplerlaan 1, 2200 AG Noordwijk (The Netherlands)

Acknowledgment

- Industrial partners:
 - Airbus GmbH: Designer of the AGGA-4 ASIC
 - RUAG-Austria: Requirements & FPGA validation
 - ATMEL: Layout, manufacturing and testing
- ESA team, in particular:
 - MicroElectronics section in D/TEC: R. Weigand
 - Navigation Section in D/TEC: G. López Risueño, J.Perelló
 - Technical Officers: P. Silvestrin, J.Roselló (D/EOP Future Missions Div.)
 - Funding sources

Contractual facts



Contract 16831/03/NL/FF

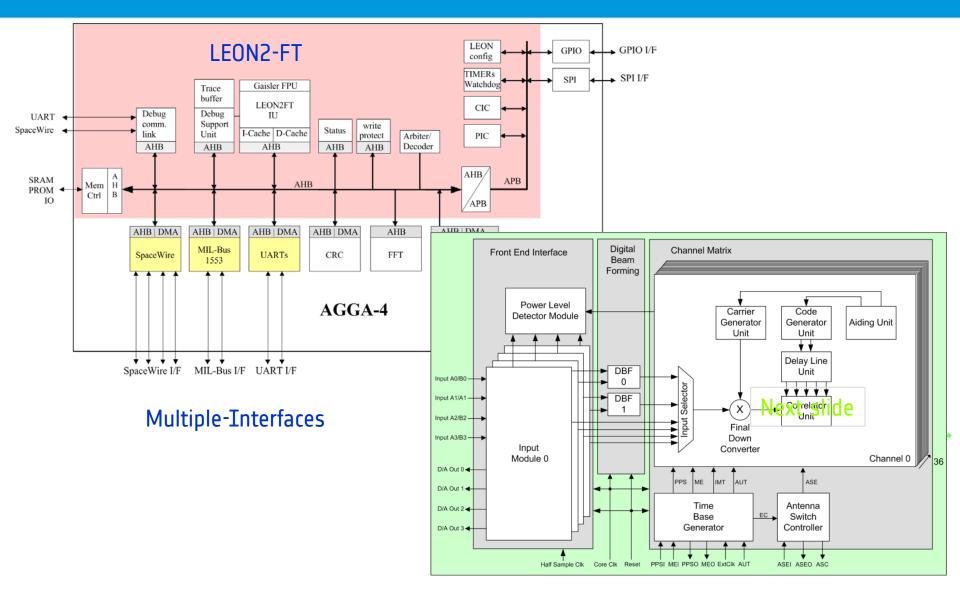
- 2003: AGGA-3 Requirements (upgrade of AGGA-2) up to initial layout
- 2008: AGGA-4 (Rider1 +6 CCNs) to upgrade (AGGA3) design + manufacturing
- 2014: delivery in June of 20 engineering prototypes
 - (Final Report in Dec-2014)
- Co-funded through several programmes:
 - EOPA (EO Prep.Activ): 56%
 - TRP : 13%
 - GSTP : 10%
 - MetOp-SG : 21%

Applications

AGGA-4 (Advanced GPS/Galileo ASIC) ; TEC-ED & TEC-SW Final Presentation Days: 01-June 2015

- relying on **<u>public</u>** (not encrypted) signals & compatible with GLONASS and Beidou

(e.g. BOC(2,2), BOC(4,4) as known


today)

- +140	compo	nont (pile	+/data)	cionalo	in one	channol	(thanks to	double code	aoporati	ar)	-
Constell ation	Band	Freq. fo (MHz)	Compo nent	Primary Code Rate (Mcps)	Primary code length (chips)	Secondary code length (chips)	Symbol/ Data Rate sps / (bps)	Modulation in AGGA-4	LFSR/ Memory (config. AGGA4)	AGGA4 nb. Channels	
Galileo	E1	1575.42	E1 B	1.023	4,092	No	250/125	BOC(1,1)	Memory	. 1 SF	
			E1 C	1.023	4,092	25	Pilot	BOC(1,1)	Memory		
	AltBoc	1191.79	E5a + E5b								
	E5a	1176.45	E5a-I (E5b-I)	10.23 (idem)	10,230 (idem)	20 (4)	50/25 (Pilot)	BPSK(10) (idem)	LFSR (idem)	1 SF (idem)	
	(E5b)	(1207.14)	E5a-Q (E5b-Q)	10.23 (idem)	10,230 (idem)	100 (idem)	(250/125) (Pilot)	BPSK(10) (idem)	Memory (idem)	1 SF (idem)	
Modernized GPS	L1c	1575.42	L1Cd	1.023	10,230	No	100/50	BOC(1,1)	Memory	1 SF	
			L1Cp	1.023	10,230	1800	Pilot	BOC(1,1)	Memory	1 SF	
	L1	1575.42	L1 C/A	1.023	1,023	No	50	BPSK(1)	LFSR	1 SF	
	L2C	L2C	L2CM	10.23	10,230	No	50/25	BPSK(0.5)	Memory	 1 SF	
			L2CL	10.23	767,25 0	No	Pilot	BPSK(0.5)	LFSR		
	L5	1176.45	L5-I	10.23	10,230	10	100/50	BPSK(10)	LFSR	1 SF	
Compas- Beidou Beidou	LIOC	1575.42	L1OCd (L1OCp)	(idem)	10,230 (idem)	(-) 1800	100 (Pilot)	GNSS public signals by 2020			2020
	L5OC B1a	1176.45 1575.42	L5OCd	10.23	10,230	10	100/50		p public Si	yliais by	2020
			(L5OCp) B1ad	(idem) 1.023	(idem) 4,092	(20)	(Pilot) 250/125	GPS	Galileo	Glonas	Beido
			(B1ap)	(idem)	(idem)	(25)	250/125 (Pilot)				
	B2a	1175.42	E5a-I (E5b-I)	10.23 (idem)	10,230 (idem)	20 (100)	50/25 (Pilot)	-) 75	
	B2b	1191.79	(E30-I) AltBoc	(ideiii)	(ideiii)	(100)	(FIIOL)			- / -	-

100

AGGA-4 architecture

European Space Agency

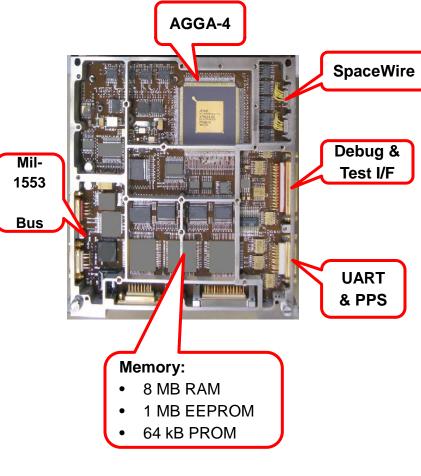
AGGA-4 (Advanced GPS/Galileo ASIC) ; TEC-ED & TEC-SW Final Presentation Days: 01-June 2015

Feature	AGGA-4	AGGA-2					
FRONT END I/F	4 Input Modules supporting: IFC, R2C, and DDC (Digital Down Conversion from IF) 3 bit => 0.17 dB implementation loss Enhanced Power Level Control (PLC)	4 Input Modules supporting: IFC (for I/Q), and R2C (real sampling) 2 bit => 0.55 dB imp. loss One PLC per Input Module					
Digital Beam Forming	2 DBF combining inputs from 2 antennas: Inputs from 4 antennas	2 DBF – by digital phase shifting (same as in AGGA-4)					
GNSS CHANNELS	(main changes in bold letters)						
# of channels	36 Single Freq. or 18 DF (target)	12 SF or 4 DF					
Compatible signals	Galileo Open Serv.: E1bc, E5a, E5b Modernized GPS: L1 C/A, L1C, L2C, L5 Existing FDMA Glonass Beidou, modernized Glonass (CDMA), (as known today)	GPS L1 C/A Semi-Codeless L1/L2 Existing FDMA Glonass					
Code Generators	(2 code gener. per channel for Pilot and Data) Primary: Flexible LFSR and memory based Secondary codes and BOC(m,n) subcarriers -> for Galileo	1 code generator per channel Fixed LFSR for certain primary codes No secondary code and no BOC.					
Delay Line	Dual stage for pilot and data	Single stage					
Correlators per channel	5 complex (I/Q) with EE, E, P, L, LL and autonomous NAV data bit collection	 3 complex (I/Q), with E, P, L, where E=early, P=Punctual, L=Late) NAV data bit collection requires software interaction 					
Codeless P(Y)	No	Yes (4 P-code units) – ESA patent					
Channel Slaving	Hardware and software slaving	Hardware slaving					
Aiding Unit per channel	Yes: Code and Carrier aiding	No. Done in software					
Observables	16 Integration Epoch (IE) Observables(DMA capable)5 Measurement Epochs (ME) Observables(DMA capable)	6 IE Observables (no DMA) 2 ME Observables (no DMA)					
Common to all channels	Antenna Switch Controller (ASC) Time Base Generator (TBG) with ME, PPS, IMT counter, External Clock interface extended reset detection section	ASC TBG with ME and PPS					
MICRO-PROCESSOR	LEON-2 FT on-chip with IEEE-754 compliant GRFPU (Float.Point)	Off-chip (typically ERC-32, ADSP 21020)					
CRC MODULE	On-chip	No – task done in software					
FFT MODULE	On-chip (128 points , fixed format) - (ideal for fast acquisition,)	No – task done in software					
EXTERNAL INTERFACES	Four SpaceWire SE , Two DMA capable UART, Mil-Std-1553, SPI I/F, DSU, S-GPO, 32 GPIO, SRAM I/F	Microprocessor I/F, Interrupt controller and I/O ports					
TECHNOLOGY	ATMEL ATC18RHA 0.18 mm, 352 pins ; 6 Mgates ; GNSS clock up to 50 MHz Die size: 13x13mm incl. pads LEON clock up to 87 MHz	0.5 micron from ATMEL, 160 pins ; 200 k gates (die size 10x10 mm including pads) GNSS clock up to 30 MHz					

GNSS Receiver Activities initiated since 2012 (when pin out was known):

- GAMIR Dual Freq. receivers up to EQM level: (one Airbus, one RUAG-A)
- Single Freq. Rx: one Airbus (EM), one RUAG-A (concept + SW simulations)
- OBC with AGGA-4 GNSS (for Telecom. sat): with TAS-I

Validation activities:


- FPGA level (done): (RUAG-A, part of C16831+Prodex) + Deimos Portugal
- ASIC level: (RUAG-A) to check performance + characterisation in temperature

Simulators with Deimos Port: for SW development without having the AGGA4 chip

AGGA-4 eval. Commercial kit	(under preparation)
AGGA-4 SEU Radiation characterisation	(under preparation)

Developments for missions : MetOp-SG (best practices), Proba-3 AGGA-4 (Advanced GPS/Galileo ASIC) ; TEC-ED & TEC-SW Final Presentation Days: 01-June 2015

AGGA4 applicationsGAMIR Astrium

Airbus GAMIR board

AGGA4 key points :

- Galileo compatibility
- radio-occult. & replace AGGA2 + DSP 21020 used on METOP (GRASS instrument)

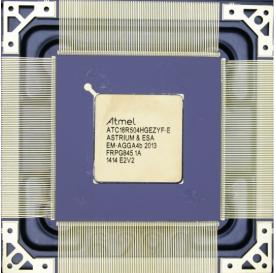
esa

• High channel Nb. (36): suitable for multi-GNSS

Missions:

- CSO (CNES): French military optical recognition
- MetOp-SG (MOS): 4 AGGA4 per sat. x 6 sat.
 → 24 parts (first launch 2021)
- PROBA-3: 2 satellites (launch end 2018)
- Candidate (driver is Galileo compatibility) for:

 Sentinels 1C, 1D, 2C, 2D, 3C, 3D
 all future LEO missions
 GEO / GTO app. : good prospects
 - No ground tracking during slow orbit raising by electrical propulsion \rightarrow GNSS opportunity
 - weak signals, weak geometry using GNSS Tx side-lobes→ overcome with multi- GNSS European Space Agency



Applications: Precise Orbit Determination (POD) and Radio Occultation

- AGGA-2 baseband processors: widely used since 200
- ESA: e.g. MetOp-GRAS a/b/c for RO, GOCE, Sentinels 1/2/3, Swarm, EarthCARE, etc.
- Non-ESA: e.g. ROSA in Oceansat-2 & MeghaTropiques, SAC-C &D, Radarsat-2, Cosmo-Skymed,

AGGA-4 : Final presentation today by Airbus

- already widely used (R&D, also in developments for missions)

European Space Agency AGGA-4 (Advanced GPS/Galileo ASIC) ; TEC-ED & TEC-SW Final Presentation Days: 01-June 2015