MISSIONIZATION PROCESS FOR MULTI-MISSION VEHICLES

Final Presentation (FP)

© GMV, 2015 Property of GMV All rights reserved **VEMIPRO-Kick Off Meeting**

Project Technical Approach

Project Background and Objectives

- The Flight SoftWare (FSW) of a recurrent operated space vehicle, requires a big amount of effort especially during the qualification phase.
- The on-board SW includes a relevant set of parameters that depend on the specific mission the vehicle is going to perform. The values to be assigned to these parameters are normally computed well before the flight using dedicated tools and specific know-how.
- This aspect is particularly relevant when addressing the main part of the on-board SW that concerns with the Guidance, Navigation and Control Function characterized by several parameters that are mission dependent

Proposal Background and Objectives

- Is not viable to repeat the whole QUALIFICATION PROCESS for each mission for both costs and schedule limitations
- The main goal for an affordable SW production should count on an executable code that has been already qualified in a well-defined domain and that remains unchanged through the different missions.
- Whenever a new Mission Data (MD) is produced it should be verified that the new MD belongs to the qualification envelope and linked the unchanged core FSW
- This missionized SW then shall enter into an acceptance process aiming at verifying that the mission requirements are fulfilled by the new missionization

Project Background and Objectives

- This missionized SW then shall enter into an ACCPTANCE PROCESS aiming at verifying that the mission requirements are fulfilled by the new missionization.
- To attain this relevant goal two main aspects are emphasized in the SoW:
 - Software Architecture Design. The whole FSW should be designed under the requirements of parameterization and modularity versus the missionization parameters.
 - Mission data Management.

A properly repository architecture shall be defined in the frame of this contract for the mission data repository in order to guarantee the correct data flow and interchange protocols.

Project Background and Objectives

The mission data repository in fact should be able to interface with the different elements of the acceptance process: Simulators, Facilities, Check tools

VEMIPRO-PDR

Missionization Process Definition

Missionization Concept Description (1)

- Produce and verify FSW and associated elements (eg simulator configuration)
- Set of Parameters computed from
 - Know-How + Tools
 - Different Actors
- Interface rules between them and Data Repository
- Missionization Process is divided in 3 levels:
 - Phases (sequential)
 - Processes (1st level)
 - Activities (2nd level)
- Phases:
 - Preliminary Analysis check feasibility, compatibility
 - Final Analysis Formal approval through different simulators (cascade process)
 - Production progressive coding from prototype into target / linking of code to MD
 - Acceptance activities are connected with facilities : SVF, SWIL, HWIL

Missionization Concept Description (2)

From Qualification to Acceptance

- Qualification
 - The executable core of FSW should be qualified in a domain
- Acceptance
 - New Mission: Mission Data is verified to be within the envelope
 - Link new MD to the core code acceptance is a simplified qualification process
- Design architecture for:
- Software parametrization and modularity
- Mission Data Management ensure data flow, consistency
 - Tools and Facilities, Simulators, Ground Tools

Mission Data Repository

- Database supporting the mission data
- Several specific missions
- Common data for multiple missions / vehicles
- Invariant Data
- Configuration Data

Missionization Process Overview

Phases

- Preliminary Studies
 - Performed by the Service Provider Authority (support from prime and clients)
 - Early integration studies (flight envelope)
 - Qualitative Analysis and Checks with pre-existing Tables and quick MA tools
- Final Analysis
 - Definition of the Final Mission (data for FSW, GS)
 - Cascade / Iterative Process using sequentially more complex tools
 - Approval of the Mission Data Final Mission Acceptance Review (FMAR)
 - Responsibility FSW development industrial prime mainly to the GNC team
- Production of the Flight Software (FSW)
 - Generation of the binary and validation on SVF target
 - Facilities to sequentially validate and go from prototype to binary on target
 - Responsibilities (Binary Production TRR , validation of SVF target TRB):
 - Mainly SW Responsible SW Architect, SW Developer, Verification and Validation and ISVV
 - GNC Team
- Acceptance of the Flight Software
 - Acceptance in the HWIL facility
 - Responsibility is on Industrial Prime operates HWIL facility

Missionization Process Overview (3)

VEMIPRO-FR

Missionisation Tool Requirements and Design

Missionization Tool Use Cases

Missionization Tool is to be used, with main use cases

- Creation of a new mission instance in the repository;
- Create a new version of a given mission/LV configuration instance in a mission repository;
- Population and/or modification of the repository;
- Data extraction from the repository for different purposes and targets. The following targets are considered:
 - Generation of missionized FSW, including data conversion to high level languages like Ada or C based on templates.
 - Test and SVF tools, including data conversion to Matlab, Perl, Python, csv and/or textual (readable by Matlab or other modelling tool) formats.
 - Ground Segment tools, including data conversion to TLM or Ground Decommutation File (GDF) formats.
 - Formal documents, in the form of tables with textual description of the data.

Missionization Tool Principles Design

Modularity is related to the easy and clean capability of substituting existing parts and components of the VEMIPRO Missionization Tool.

- <u>High level design</u>:

- Goal and responsibilities of each component of the tool's control logic is well defined providing a clear separation of functionalities.
- Each component is designed to have only simple I/F interactions with the other components.

- Mission data repository design:

- Stored data is precisely categorized and identified.
- Parameters divided into different hierarchical level following the logic Category -> Family -> Sub-Family.
- Parameters further separated by Mission and Mission Version.

Missionization Tool Principles Design

- **Configurability:** possibility to easily configure and adapt the tool to:
 - specific missions & launch vehicles
 - different templates for exporting/importing mission data
 - different users with different roles
 - different physical sites.

Missionization Tool Principles Design

- Maintainability: Tool is designed as a mission data repository that can continuously evolve adding new missions, mission versions launch vehicles and their configurations in the frame of future activities or missions.
- Furthermore, new users, data checks, internal/external interfaces and input/output formats can be added without hurting the tool's functionality.
 - logic components simple, with precise functionalities and easily identifiable
 - mission data stored in the tool's repository is separated according an hierarchical scheme
 - not specific to any mission or launch vehicle
 - any changes performed on the mission data stored in tool's repository are registered

VEMIPRO-FP

Missionization Tool High Level Architecture

Missionization Tool Modules API

 Responsible for the user interface with the Tool and providing a Graphical User Interface (GUI) and a Command Line Interface (CLI)

User Management

 Responsible for storing the information related to each user (e.g. authentications, permissions, logging history, etc.)

Data Management

 Responsible for handling the data in the mission data repository (e.g. import data, compare, modify, synchronize, etc.)

Data Checks

 Responsible for performing automatic checks on the data stored in the mission data repository (e.g. data checksum, integrity, format, syntax, external checks, etc.)

Configuration Control

 Responsible for keeping a record of the changes performed on the data repository (e.g. versioning, tagging, history, grouping, etc.)

External I/F & Conversion

 Responsible import/export of data from/to local areas and conversion of the mission repository data into textual format

Missionization Tool Modules

VEMIPRO-FR

Study Cases Definition and Scenarios

Study Case: ARIANE-6

Study case: Ariane 6

- Ariane-6 launcher version, approved to the last ministerial council shall be hence based on:
 - Lower Stage: a cryogenic main stage (LOX/LH2), propelled by Vulcain engine (in its version 2+).
 - Strap on Boosters: two or four Solid Rocket Boosters (SRB), in the class of 120t of propellant (dubbed P120C), which will be common with Vega-C.
 - Upper Stage: a cryogenic upper stage (LOX/LH2) propelled by Vinci engine, based on the Ariane 5 ME Upper Stage

Ariane-6 Configuration

- In its current version Ariane 6 considers two main configurations:
- A62 equipped integrating
 - Two Solid Rocket Booster based on VEGA P120-C stage
 - A short Fairing for a single payload release on to GTO orbit
 - A single payload adapter.
- A64 equipped integrating
 - Four Solid Rocket Booster based on VEGA P120-C stage
 - A long fairing for a dual payloads release on to GTO orbit
 - A very long SYLDA adapter shall be derived from A5ME program to allow the dual launch

Ariane-6 Vehicle

Configuration	Performance
A-62	5.8t GTO
A-64	10.9t GTO
A-62/A-64	≥4.5t SSO

Ariane-6: Mission & Main Mission Phases

Ariane-6 Mission

 Ariane-6 specifications require the launcher to attain several orbits: LEO, MEO, GEO, HEO, GTO, GTO+, Hyperbolic

Secondary Missions	Туре	Configuration	Qualification	Orbital Parameters
			in less than	
			(months)	
MEO-Galileo	Single Launch	A62	24	Circular orbit
				22620 - 23220 km
				Inclination: 54° - 58°
LEO/ATV	Single Launch	A62	24	Circular orbit (260 to 400 km)
				Inclination: 51.6°
GTO+/GTO ++	Dual Launch	A64	6	180 km ≤ Perigee L ≤ Perigee U ≤ 35286 km
				Apogee: 35.286 km
Direct GTO+	Single Launch	A64	15	2000 km ≤ Perigee ≤ 35286 km
				Apogee: 35.286 km
GTO Single	Single Launch	A62	15	Perigee: 180 – 250 km
				Apogee: 35.286 / 36.286 km
Escape Lagrange	Single Launch	A64	24	Apogee: 1.300.000 km
Lunar Transfer	Single Launch	A64	24	Apogee: 350.000 km
				Incl. 18° to 29°
Escape Mars	Single Launch	A64	24	V∞: 2 to 4 km/sec
Escape Mercury	Single Launch	A64	24	Voo: 3.8 to 4.2 km/sec
Escape Jupiter	Single Launch	A64	24	Voo: 3 to 4 km/sec
				Launch declination 0° to -5°
GTO / Escape	Dual Launch	A64	24	Upper S/C as GTO
				Lower S/C as for * or *** or ***
SSO	Single Launch	A62	24	Circular orbit
				600 – 800 km
				Inclination: 96° - 99°
GEO mission	Single Launch	A64	15	Circular orbit
				35.286 / 36.286 km
				Incl. 0°
GTO-OURS	Dual Launch	A64	6	Upper S/C and Lower S/C as GTO
				(with a higher performance reached using statistical reserves down to 50% of exhaustion probability of US)
GTO/GTO+OURS	Dual Launch	A64	6	Upper S/C and Lower S/C as GTO/GTO+
				(with a higher performance reached using statistical reserves down to 50% of exhaustion probability of US)
GTO/SuperGTO+	Dual Launch	A64	15	Upper S/C as GTO (with incl. 6°)
				Lower S/C Super-synchron 24 hours 6° with perigee of 3000 km

Ariane-6 Missionization Parameters

Category	Description
Configuration	Data pertaining to a specific family of the vehicle and which does not change between missions using the same version of the vehicle (e.g., number of boosters, amount of liquid propellant, service modules)
Mission	Data which in principle changes from mission to mission (e.g., mass of the payload)
Invariant	Data that never changes from mission to mission and regardless of the vehicle being used (e.g., universal constants). Nevertheless, it is listed here for sake of completeness

Family	Sub-Family	Description
GNC	NAV	Navigation
Guidance,	GUI	Guidance
Navigation and	RCS	RCS Control
Control	FM	Flight Management
	MEC	Mechanisms
	TVC	Thrust Vector
		Control
	TVC-P120C	TVC for SRMs
	TVC-EPC	TVC for main
		cryogenic stage
	TVC-ESC	TVC for upper
		stage
	RCS-EPC	RCS for Exo-EPC
		phase
	RCS-ESC	RCS for ESC phase
VMS	VM	Vehicle
Vehicle		management
Management	FDIR	Fault Detection,
Management		Isolation and
Software		Recovery
	TLM	Telemetry data to
		be transmitted
		during the mission.
SIM	USV	Vehicle
Simulation of		configuration
Vehicle and	ENV	Environment
Environment		configuration
GS	GS	Data needed for
Ground Segment		missionisation of
		Ground tools and
		generate the FED
		files, etc

Ariane-6 Missionization Parameters List

Category	Family	Sub-family	Name	Description	Comment
Configuration	GNC	FM	C_TIME_PITCHOVER_START	Time for Pitch Over Manoever	Associated to cleareance of launch-pad. Can change between configurations
Configuration	GNC	GUI	C_P120C_NUMBERS	Number of P120-C boosters	2 for A62 , 4 for A64
Configuration	GNC	GUI	C_FAIRING_MASS	Fairing mass	Different fairings for different A6 configurations
Configuration	GNC	RCS	C_RCT_ANGLE	Thruster direction angle	RCS Thrusters direction could evolve towards different configuration
Configuration	GNC	RCS	C_RCT_POSITION	Thrust position	RCS Thrusters position could be modified
Configuration	GNC	RCS/TVC	C_FAIRING_INERTIA	Fairing Inertia (matrix)	Different fairings for different A6 configurations
Configuration	GNC	RCS/TVC	C_FAIRING_COG	Fairing CoG	Different fairings for different A6 configurations
Configuration	GNC	TVC	C_ESC_PROPMASS	Upper stage total liquid propellant	ESC total amount of stored propellant could change depending on the launcher configuration
Configuration	GNC	TVC	C_SYLDA_MASS	SYLDA Mass	SYLDA, the A6 multipayload adapter could have different configuration
Configuration	GNC	TVC	C_SYLDA_COG	SYLDA COG	SYLDA, the A6 multipayload adapter could have different configuration
Configuration	GNC	TVC	C_SYLDA_INERTIA	SYLDA Inertia (mass)	Different payload adapters for different A6 configurations
Configuration	GNC	TVC	C_PAYLOAD_ADAPT_MASS	Payload Adapter Mass	Different Payload Adapters could be considered for different launcher configuration
Configuration	GNC	TVC	C_PAYLOAD_ADAPT_COG	Payload Adapter CoG	Different Payload Adapters could be considered for different launcher configuration
Configuration	GNC	TVC	C_PAYLOAD_ADAPT_INERTIA	Payload adapter Inertia	Different Payload Adapters could be considered for different launcher configuration
Configuration	SIM	USV	C_MAX_HEATRATE_LF	Maximum Heat Rate Long Fairing	Total heat rate is a parameter normally shaping the trajectory optimisation. It could depend on the fairing and hence on the Launcher configuration

Study Case: SPARTAN

SPARTAN-FP7

Several Tests and a unique OBSW

Elements

Intermediate Validation

Intermediate Validation

Avionics Architecture

Avionics Box

Static Tests

TR4 Simulation in FES

SPARTAN Parameters List

Category	Family	Sub- family	Name	Description	Comment
Configuration	CTR	THR	uu	FCV throttling steps table	Configurable parameter – changing it will result in control redesign
Configuration	CTR	THR	RR	Grain regression table	Configurable parameter – changing it will result in control redesign
Configuration	CTR	THR	СС	FCV throttling steps percentage of nominal thrust table	Configurable parameter – changing it will result in control redesign
Configuration	FM	FM	Ν	Flight software frequency	It can change depending on mission requirements but it would lead to a complete re-evaluation of the GNC.
Configuration	GUI	GUI	eps	FCV commands quantization	Configurable parameter – changing it will result in control redesign
Configuration	GUI	GUI	dC_max	FCV commands rate limiter	Specific valve characteristic
Configuration	Time	Sample	dt	Sample Time	It can change depending on mission requirements but it would lead to a complete re-evaluation of the GNC.
Invariant	Body	Body	pos	Position of the fuel and oxidizer tanks in the lander body frame	Fixed for every mission
Invariant	Const	Const	PI	PI constant divided by 180	Constant
Invariant	CTR	FUE	L	Length of solid fuel in tank	Fixed for every mission (engine characteristic)
Invariant	CTR	FUE	RO	Internal radius of solid fuel	Fixed for every mission (engine characteristic)
Invariant	CTR	FUE	R1	External radius of solid fuel	Fixed for every mission (engine characteristic)
Invariant	CTR	FUE	rho	Density of solid fuel	Fixed for every mission (engine characteristic)
Invariant	CTR	FUE	а	Nozzle efficiency parameter	Fixed for every mission (engine characteristic)
Invariant	CTR	FUE	n	Nozzle efficiency parameter	Fixed for every mission (engine characteristic)
Invariant	CTR	OXI	dm_max	Maximum mass flow rate of oxidizer	Fixed for every mission (engine characteristic)
Invariant	EPS	EPS	eps	Epsilon value used for machine tolerance	Fixed for every mission
Invariant	GUI	CL	r	Engine distance from the body reference system	Fixed for every mission
Invariant	GUI	CL	g	gravity	Physical constant
Invariant	INF	INF	inf	Infinity value used for machine tolerance	Fixed for every mission
Invariant	NAV	NAV	gO	Value of the local gravity acceleration	Physical constant – vector

Study Case: PRIDE

IOSV Study Case - PRIDE

System Description

- Vehicle PRIDE (High L/D re-entry follow-up of IXV)
 - From Phase A for Vega-launched demonstration
 - General description shape, mass, dimensions
 - AOCS / GNC Equipment assumes ADR package in cargo bay (<50kg)
- Mission Active Debris Removal
 - Adapt baseline to deorbiting small (~150 kg) satellites using net system (looser contraints on rv accuracy, passive detumbling)
 - Assume high degree of autonomy , INS+GNSS-based navigation
- SW Architecture / GNC definition
 - Adapted from IXV
 - GNC modes for LEOP, RV, Re-entry defined

Instantiation

- Sample list of Missionization /Configuration/Invariant Variables
- Divided into Families / Subfamilies

System Description

Vehicle – PRIDE USV3

- From Phase A for demonstration LEO mission:
 - Dimensions 5.31 m long, 2.2 m wide (VEGA)
 - Wet mass: 1600 Kg, dry 1440 Kg
 - L/D : hypersonic 1.2 , subsonic 4
 - ADR package in cargo bay (max 50 kg) : DVS camera plus Net system – ANdROiD/PATENDER heritage)

ASCS - active during late atmospheric reentry and landing.Derived from the IXV Flap Control SystemMain navigation sensor for all-round orbital operations and re-entry.Navigation-Grade Inertial with Tight GPS / INS integration, including differential GPS for autonomous landing, eg.: Honeywell SIGI (COTS) X37Sensor for Proximity/Rendez-vousNavigation Camera with integrated image processing (eg.: DVS from TSD – PRISMA heritage)Sensor for TAEM/Approach and LandingBarometer / Radar Altimeter / dGPS	RCS – proximity manoeuvres, orbital and hypersonic re-entry	Set of 6 hydrazine 400 N Thrusters
Main navigation sensor for all-round orbital operations and re-entry.Navigation-Grade Inertial with Tight GPS / INS integration, including differential GPS for autonomous landing, eg.: Honeywell SIGI (COTS) X37Sensor for Proximity/Rendez-vousNavigation Camera with integrated image processing (eg.: DVS from TSD – PRISMA heritage)Sensor for TAEM/Approach and LandingBarometer / Radar Altimeter / dGPS	ASCS - active during late atmospheric re- entry and landing.	Derived from the IXV Flap Control System
Sensor for Proximity/Rendez-vous Navigation Camera with integrated image processing (eg.: DVS from TSD – PRISMA heritage) Sensor for TAEM/Approach and Landing Barometer / Radar Altimeter / dGPS	Main navigation sensor for all-round orbital operations and re-entry.	Navigation-Grade Inertial with Tight GPS / INS integration, including differential GPS for autonomous landing, eg.: Honeywell SIGI (COTS) X37
Sensor for TAEM/Approach and Landing Barometer / Radar Altimeter / dGPS	Sensor for Proximity/Rendez-vous	Navigation Camera with integrated image processing (eg.: DVS from TSD – PRISMA heritage)
	Sensor for TAEM/Approach and Landing	Barometer / Radar Altimeter / dGPS

System Description

Mission— (very autonomous) Active Debris Removal

- Pre-launch, LEOP and Phasing with AVUM to trailing orbit

Sample target: Proba 2 – 150 kg , in SSO)

- Rendez-vous and capture concept from ANdROiD (scaled):

- Far Range approach to 1 km supported by GPS+INS.
- Hold point and ADR package comissioning smart camera and net capture
- Close Range (hoping) supported by camera to ~30 m from target
- Capture via net (10x10 m system), passive detumbling
- Hold point and ADR package comissioning – *smart* camera and net capture
- Close Range (hoping) supported by camera to ~30 m from target
- Capture via net (10x10 m system), passive detumbling
- Deorbiting via series of perigee lowering burns (tethered)
- Separation and insertion into reentry ballistic arc

System Description

– Re-Entry and Auto-Landing:

- Hypersonic re-entry 120 km to 20 km, Mach 20 to Mach 2, high AoA
 - The GNC minds thermodynamic and mechanical constraints.
 - Attitude controlled through RCS thrusters.
- Terminal Area Energy Management (TAEM) from TAEM Entry Point (TEP), to Mach 0.5, the Nominal Exit Point (NEP)
 - S-turns to dissipate potential and kinetic energy
 - Aligns the vehicle's heading with the runway
 - Navigation radar and GPS/dGPS , still RCSbased attitude, lower AoA
- Aproach and Landing (A/L) - steep/shallow glideslopes, a parabolic pullup and final sink rate control. ASCS actuated (similar to conventional aircraft)

High Level Software Architecture

- Data Handling Subsystem IXV
- Tasks: GNC, Recording, Transfer
- Supported by: OBC, INS/GPS, RV and Re-entry sensors, DAU, Recorders, connected through 1553 MIL bus
- Actuates: RCS, ASCS
- GNC
 - Flight Manager: autonomous program (eg.: PROBA heritage) and monitoring
 - Guidance and Navigation: Orbital/Absolute ; Relative/RV; Re-entry

Flight Modes

Mode	Starting Activites	Navigation	Guidance and Control
Absolute	During Launch, Phasing (AVUM-controlled) and in the re-entry insertion orbital arch.	Absolute based on INS+GPS (when available).	Initial: LEOP - Passive (Attached to launcher / service module) Final: re-entry ballistic arch – absolute guidance and slew (RCS)
Far Range Rendez- Vous	From AVUM separation until 1 Km from target.	Absolute/Relative based on INS+GPS and updated TLE of target	Scheduled impulsive Hohmann transfers (RCS)
Close Range Rendez- Vous	Camera acquisition. Comissioning of ADR payload.	Relative based on INS+GPS and VBS integration.	Impulsive hops to 20 m from target. Pointing slew (RCS).
Capture & De-Orbiting	Capture and passive detumbling.	Absolute/Relative based on INS+GPS and VBS integration.	Series of impulsive perigee lowerings.
Hypersonic Re-Entry	At EIP, 120 km altitude, end of ballistic arc (done in absolute mode)	Re-entry mode, based on INS+GPS and aerodynamic databases. Outputs states in inertial and atmosphere- relative frames.	Track drag-speed profile / attitude profile for mechanical and aerothermodynamical constraints.
TAEM Mode	From TAEM conditions (~Mach 2)	Re-entry mode, based on INS+dGPS, barometric,	Dissipate kinetic and potential energy, align with track, through RCS and ASCS.
A/L Mode	From NEP (~Mach 0.5)	Possibly ILS.	Automated landing sequence(sink rate acquisition, glideslope), ASCS-only.

PRIDE Data

- Sample of data from each
 - Category (Configuration / Mission / Invariant)
 - Family
 - Subfamily

Family	Sub- Family	Description
GNC	NAV	Navigation
Guidance,	GUI	Guidance
Navigation and	RCS	RCS Control
Control	ASCS	ASCS Control
	FM	Flight Management
	MEC	Mechanisms
VSW	VM	Vehicle management
Vehicle	FDIR	Fault Detection, Isolation and Recovery
Management	TLM	Telemetry data to be transmitted
Coftwara		during the mission.
Sontware		Vahiele configuration
SIN	USV	
Simulation of	ENV	Environment configuration
Vehicle and		
Environment		
GS	GS	Data needed for missionisation of Ground tools
Ground Segment		and generate the FED files, etc

PRIDE Data

Example

Category	Family	Sub-family	Name	Description
Invariant	GNC	GUI	I_G0	Gravitational Acceleration
Mission	GNC	GUI	M_DEORBIT_ORBITS	Intermediate orbital elements as targets of perigee lowering burns
Configuration	GNC	GUI	C_Q_MAX	Maximum heat flux
Configuration	GNC	RCS	C_THRUSTER_LOCATION	Location of thrusters in vehicle frame
Configuration	GNC	RCS	C_THRUSTER_DIRECTION	Direction of thrusters in vehicle frame
Mission	GNC	RCS	M_MASS_CONSUMPTION_INIT	Initial estimated mass consumption
Mission	GNC	FM	M_ALTTITUDE_SWITCH	Altitude values to switch modes that are activated via altitude
Mission	GNC	FM	M_DRAG_SWITCH	Drag values to switch modes that are activated via drag
Mission	GNC	FM	M_ENTRY_ALTITUDE	Higher altitude to enable DRS triggering computation
Mission	VSW	VM	M_VEHICLE_MANAGEMENT_FLAG	Table with the values of the vehicle mode management flag
Mission	VSW	FDIR	M_FDIR_STATUS	Status flag for FDIR
Mission	VSW	TLM	M_DATA_SELECT	Identifiers of data batches to be transmitted to ground
Configuration	GNC	NAV	C_IMU_QUANTIZATION	IMU quantization step
Mission	GNC	NAV	M_MASS_INIT	Initial total mass
Configuration	SIM	USV	C_AEDB_DRAG	Drag lookup table (drag coefficient from Mach, AoA, Reynolds)
Mission	SIM	ENV	M_WIND_MODEL	Wind model table
Mission	GS	GS	M_STATION_MIN_ELEV	Minimum elevation for tracking with each station
Configuration	GNC	NAV	C_IMU_QUANTIZATION	IMU quantization step
Mission	GNC	ASCS	M_DYN_PRESSURE_RANGE	Range limits for the dynamic pressure
Mission	GNC	ASCS	M_VELOCITY_LIMITS	Velocity range limits

VEMIPRO-FR

Missionization Tool Prototype

Prototype Implementation Main Goals

- The main goals of missionization tool prototype are:
 - Demonstration of the missionization **main use cases**:
 - Insert new mission data
 - Update existent mission data
 - Generate FSW missionized files for running the FSW in the correspondent facility
 - · Generate report of a mission
 - Manage Repository Configuration
 - Perform external user defined checks on the mission data
 - First attempt of missionization tool implementation and configurations definition
 - First definition of **formats**, **templates** and **products** generation
 - First definition, management and implementation of external user defined checks

Prototype Implementation Architecture

High level architecture of prototype

Missionization Tool Prototype - DEMO

Prototype environment requirements:

- Matlab (e.g. R2012a)
- TortoiseSVN

Data has been provided for the following missions:

- ARIANE6
- PRIDE
- SPARTAN
- VEMIPRO (defined in TN01 VEGA like)

Prototype Modules – 1/3 <u>Configurations</u>

This module contains the configuration files that report the missionization parameters (ARIANE6, PRIDE, SPARTAN and VEMIPRO configuration defined)

Products

This module contains all the files generated as output of the missionization tool prototype activities (e.g. reports, ASCII files, h files, binary files, etc.). It accounts for templates to generate the products, such as:

- Matlab mission template
- DAT mission template.
- XML mission template.
- C mission templates.
- Report template.
- ADA mission template

<u>Checks</u>

This module contains all the Matlab functions that implement user defined checks and scripts containing a lists of pre-defined checks

- L Configurations
 - ARIANE6_DataConfiguration.xlsx
 - PRIDE_DataConfiguration.xlsx
 - SPARTAN_DataConfiguration.xlsx
 - VEMIPRO_MissionDataConfiguration.xlsx
 - E | Products
 - 🗉 📙 Templates
 - ada_mission_template.ads
 - c_mission_template.h
 - DAT_mission_template.dat
 - m_mission_template.m
 - report_mission_template.xlsx
 - ____ xml_mission_template.xml
 - 🗉 📕 Checks
 - CHECK_AllPositive.m
 - CHECK_AllZero.m
 - CHECK_NonZero.m
 - TEST_checks_list1.m
 - TEST_checks_list2.m

Prototype Modules – 2/3 ProcessingCore

This module contains all the functions for managing all the missionization tool prototype main activities such as:

- Insert new mission data
- Update existent mission data
- Generate FSW missionized files for running the FSW in the correspondent facility
- Generate report of a mission
- Perform checks on mission data
- Manage Repository Configuration

<u>GUI</u>

This module accounts for a GUI that uses Matlab scripts underneath (e.g. Command Line interface)

E | ProcessingCore Check_parameters_influence.m Check_update_influence.m logy_mission_data.m execute_data_checks.m export_mission_data.m generate_ada_init_mission.m agenerate bin init mission.m generate_c_init_mission.m generate_dat_init_mission.m generate_m_init_mission.m generate_new_mission.m generate_report_mission.m generate_xml_init_mission.m get_mission_data.m loget_mission_data_to_update.m load_MDR_mission_data.m Manage SVN.m berform_checks.m Read_MDR_data.m less set mission data.m update_mission.m 🖄 write_ada_mission.m Mite_bin_mission_file.m write c mission.m Write_dat_mission.m Write_m_mission.m Write_m_mission_single_file.m Write_xml_mission.m xls_config_read.m 🖄 xls data read.m 🗉 📗 GUI GMV_RGBrojo_Bckgnegro.jpg 🚵 MisTo_GUI.fig 🖄 MisTo_GUI.m

Prototype Modules – 3/3 MDR

This module contains the mission data repository managed by the tool prototype (under configuration control). The data are organized as directory structure per category, family and subfamily as follows:

- Category (e.g. MissionData, ConfigurationData, InvariantData)
 - Family 1
 - Sub-family 1
 - xml files
 - Sub-family 2
 - ...
 - Sub-family N
 - Family 2
 - ...
 - Family N

The **XML** format is used to store mission data of each sub-family in the correspondent file

Prototype Implementation Aspects

- Matlab has been selected as implementation and scripting tool for the missionization tool prototype
- SVN (e.g. TortoiseSVN) has been selected for MDR configuration control
- The SVN is directly accessed and managed by the prototype GUI
- User configurable files and templates are used to generate the reports and the missionized FSW files
- The missionization tool prototype can manage different missions data and versions
- A GUI provide the direct access to the prototype functionalities
- A CLI can be used for commanding the missionization tool prototype (commands underneath the GUI)
- Starting point for a complete and operative missionization tool

Prototype Implementation Main Restrictions

- The main **restrictions** of missionization tool prototype are:
 - No user permission management is implemented
 - No complete data checks are implemented (e.g. integrity, consistency, checksum, etc.)
 - No complete format and syntax standards are implemented (e.g. numerical formats, exponent-decimal, comma-dot format, data type mapping in C-ADA, etc.)
 - No totally customizable templates for products generation
 - No totally customizable templates for reports generation
 - No complete data type management is implemented

Thank you

VEMIPRO - TEAM Space Systems BU www.gmv.com

