
Parallelization features	

11th Geant4 Space Users Workshop – 26-28 August 2015, Hiroshima	

A. Dotti (adotti@slac.stanford.edu)	

SLAC / EPP-Computing	

MT, MPI, TBB!

2	

Outline	

•  Introduction and review of MT	

•  Recent results for MT	

•  TBB integration	

•  MPI integration	

Introduction	

3	

4

The challenges of many-core era

• Increase frequency of CPU causes
increase of power needs

• Reached plateau around 2005!
• No more increase in CPU

frequency!
• However number of transistors /$

you can buy continues to grow !
• Multi/May-core era!

• Note: quantity memory you can
buy with same $ scales slower!

• Expect:
• Many core (double/2yrs?)!
• Single core performance will not

increase as we were used to!
• Less memory/core!

• New software models need to
take these into account:
increase parallelism

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?!
DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.!
CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p. 167. ;!
Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”!

Microprocessor Frequency (MHz)

Microprocessor power dissipation (W)

More details in: https://indico.esa.int/indico/event/50/session/11/contribution/13/material/slides/0.pdf

Increase CPU frequency and feature
size reduction: above thermal capacity
of chips	

	

Since ~2005: 	

•  no more increate in CPU

frequency	

•  still increase in number of

transistors/$: many-core era
(note: memory/$ scales slower)	

	

Expect: 	

•  CPU with many cores	

•  Single core performances not

increasing (maybe even decreasing)	

•  Less memory/core	

In Brief

•Modern CPU architectures: need to introduce parallelism!
•Memory and its access will limit number of concurrent
processes running on single chip!
•Solution: add parallelism in the application code
!

•Geant4 needs back-compatibility with user code and simple
approach (physicists != computer scientists)!
•Events are independent: each event can be simulated
separately!
•Multi-threading for event level parallelism is the natural
choice!

5

More details in: https://indico.esa.int/indico/event/50/session/11/contribution/13/material/slides/0.pdf

Multithreading in Geant4	

•  Introduced in Version 10.0 (December 2013)	

•  Goal: effectively reduce memory footprint	

	

M. Verderi (LLR/IN2P3)

7	

Multithreading: Master/Worker Model	

8	

Roadmap	

Version 10.0 (Dec.
2013)
•  Implement correct MT

behavior (remove race
conditions)

• Memory reduction from
geometry and physics

Version 10.1 (Dec.
2014)
•  Improve migration some

components (GPS,
RDM, Vis)

• Obtain further x2
memory reduction

Version 10.2 (Dec.
2015)
• Finalize VIS module
• Simplify integration of G4

with MPI and TBB

Results	

9

Memory reduction	

Version Intercept Memory/thread
9.6 (no MT) 113 MB (113 MB)
10.0.p02 (no MT) 170 MB (170 MB)
10.0.p02 151 MB 28 MB
10.1.p02 164 MB 10 MB

Memory limit for
Intel Xeon Phi 3120A

Speed-up	

• Number of events/second is the most important
metric for users	

• Very good linearity (>93%) with the
number of physical cores available	

• Benefits from hyper-threading: ~30%	

• Verified for different types of applications:	

• Medical physics applications 	

• CERN Experiments setups	

Physical	

cores	

7120P	

CERN Experiment geometry and physics	

3.0�103

1.0�104

3.0�104

1.0�105

3.0�105

Nehalem
8 cores
45nm

Westmere
12 cores
32 nm

Sandy Bridge
16 cores

32nm

Ivy Bridge
24 cores
22 nm

Haswell
28 cores

22nm

Knights Corner
61 cores

22nm

Knights Landing
60+ cores

14 nm

P
er

fo
rm

an
ce

,
ev

en
ts

 s
-1

Manycore (MIC)
architectures

TICK TOCK TICK TOCK

TICK+TOCK

1.55x 1.26x 1.40x 1.42x

?

Multi-threaded Geant4
Single-threaded Geant4

Architectures comparison	

•  Geant4 scales as expected on host CPU
architectures	

•  Multi-threading using all cores	

•  Energy efficiencies obtained:	

•  Each new hw generation improves

performance and decreases energy
budget	

	

	

2 sockets systems	

 0

 2

 4

 6

 8

 10

Nehalem
8 cores
45nm

Westmere
12 cores
32 nm

Sandy Bridge
16 cores

32nm

Ivy Bridge
24 cores
22 nm

Haswell
28 cores

22nm

E
ne

rg
y

co
ns

um
pt

io
n,

 m
J

ev
en

t-1

TICK TOCK TICK TOCK TICK
33% less 17% less 50% less 24% less ?

Architectures comparison	

•  MIC architecture: more work to be done	

•  From profiling analysis:	

•  Sub-optimal use of vector registers	

•  Need to optimize data container (e.g.

cross-sections data-tables)	

3.0�103

1.0�104

3.0�104

1.0�105

3.0�105

Nehalem
8 cores
45nm

Westmere
12 cores
32 nm

Sandy Bridge
16 cores

32nm

Ivy Bridge
24 cores
22 nm

Haswell
28 cores

22nm

Knights Corner
61 cores

22nm

Knights Landing
60+ cores

14 nm

P
er

fo
rm

an
ce

,
ev

en
ts

 s
-1

Manycore (MIC)
architectures

TICK TOCK TICK TOCK

TICK+TOCK

1.55x 1.26x 1.40x 1.42x

?

Multi-threaded Geant4
Single-threaded Geant4

2 sockets systems	

Benefits to sequential builds	

 R

el
at

iv
e

E
vt

/s
 (h

ig
he

r i
s

be
tte

r)

What is next	

Core	

Socket	

Node	

User Interface	

 Application"

MPI"

pthread/TBB"

Algorithms"
improvements"

pthread/TBB"

Algorithms
improvements"

MPI"

pthread/TBB"

Algorithms
improvements"

pthread/TBB"

Algorithms
improvements"

Su
bj

ec
t o

f t
hi

s"
Pr

es
en

ta
tio

n"

The Case for TBB	

Intel Threading Building Blocks	

•  Parallelization library to express parallelism in form of tasks
that can be executed concurrently	

- Intel product now available open-source (and free) for all systems and
compilers	

•  Hides the complexity of threading to the user
(responsible only to define the work unit and -if needed- their
dependencies)	

•  For Geant4 job: each event (or group of) is one task	

•  For large software projects integration of many components

libraries becomes simpler (strong interest from LHC
experiments) 	

18	

TBB in action	

Threads Pool

Task Task Task Task

Tasks Queue

19	

TBB in action	

Threads Pool

Task Task Task Task

Tasks Queue

TBB library, little control

20	

TBB in action	

Threads Pool

Task Task

Task Task

Tasks Queue

TBB library, little control

21	

TBB in action	

Threads Pool

Task Task

Task Task

Tasks Queue

Task done,
pop another one

TBB Integration	

•  Challenge:	

- TBB task model prefers “thread unaware” algorithms: i.e. workers should never get

access to low-level threading details	

- Geant4 MT model requires direct control of Thread-Local-Storage	

‣  essential to perform lock-free code during simulation	

	

•  Latest versions of TBB introduced concept of observer: user-code that is executed
once, by each low-level thread, before workers start	

- Create a Geant4 observer responsible of initializing TLS	

- demonstrated in extended example (under development)	

•  TBB integration becomes much easier:	

-  CMS migrated to Geant4 MT, even without this, in a reasonable time	

- ATLAS already using this concept in athenaMT (under development) – with SLAC

support	

23	

Decoupling of worker threads from master	

Current parallelization model:	

• threads organized as a “static pool”	

• parallelization model is SPMD (single-program-multiple-data): threads are clones	

Possible limitation for task-based frameworks (e.g. TBB)	

• typically require worker decoupled from underlying threading model	

• strong interest from LHC experiments (CMS, ATLAS and LHCb frameworks based

to some extended on TBB: CMSSW, GaudiHive)	

	

What we would like (work item for 2016):	

• number of thread can vary in any moment during a job (constant during event loop

to avoid synchronization primitives)	

• any thread should be able to join/leave the workers pool	

	

MPI Integration	

25	

Acknowledgemnts	

For MPI integration in Geant4 we need to thank:	

	

K. Murakami (KEK) as the original author of G4mpi library	

G. Barrand, I.Hrivnacova (IN2P3) for the integration of analysis tools
and G4mpi	

What is MPI (Message Passing Interface)	

•  Distributed memory parallelization framework	

- Clones of the job are started in parallel on a cluster or a multi-core

machine	

- They cooperate on solving a problem exchanging messages	

•  An MPI application:	

- MPI is de-facto standard on large computing centers	

- Cannot achieve memory reduction	

- Is simpler to program w.r.t. a multi-threaded application	

•  It is possible to combine MPI and MT	

- With MPI scale across nodes	

- With MT scale across cores	

MPI and Geant4	

•  MPI optimized for large (and/or frequent) messages	

•  Geant4 ranks have very little communication among them	

•  Still MPI is an attractive possibility for several reasons:	

1.  excellent support from a very large community	

2.  can use clusters or HPC systems where MPI is very common	

3.  preferred for asynchronous applications on Xeon Phi systems	

4.  very simple to use with Geant4	

MPI Library and Example	

•  Examples and runtime library in examples/extended/parallel/MPI	

- not built by default with Geant4 because requires external MPI package	

•  G4mpi library contains specialized managers and utilities (e.g. RNG handler,
reducers)	

•  Compatible with many flavor of MPI	

•  Three examples show how to create parallel applications	

-  two already available since version 9.1	

-  substantially improved	

•  Substantially improved for 10.1 and more coming in 10.2	

- Better integration with CMake building system	

- Reducer for physics data	

Results Reduction (new in 10.1)	

•  Similarly to what is done in MT analysis quantities are
merged at the end of the run	

- Ranks send back to master their partial results	

- Masters sums up everything in a single output	

•  Support for: command line scoring, G4Run user-data, g4analysis
histograms	

Status	

•  Reductions for MPI are available in Version 10.1, but…	

- optimization of communication pattern is underway: systems with many

ranks can suffer important overheads	

- improvement of G4mpi library (some small user-code changes expected

in 10.2)	

•  Promising development, we are also learning in the process,
feedback is welcome	

A complex example: MPI + MT + …	

Slide from P. Calafiura (LBL)

Conclusions	

Parallelization in Geant4	

Key driving forces:	

	

- use well established standards and avoid “reinventing the

wheel” (e.g. pthreads, MPI, …)	

- minimal API changes to simplify user-code migration	

‣  we believe multi-threading is an excellent example of this success	

- iteratively improve CPU and memory performances 	

- introduce new functionalities in close dialogue with users: MPI used by
users since some years, now time to provide common tools	

	

Parallelization in Geant4	

Geant4 MT has been adopted by many communities,
including large experiments:	

- we have successfully met our goals (memory reduction,
scalability)	

- focus is now shifting towards integration with external
parallelization frameworks and improving algorithm
performances	

A word on future activities	

•  Geant4 Version 10.2 will be based on C++11 standard	

- users need a recent compiler and a system supporting this standard	

- we’ll migrate from pthreads to std::thread	

‣  it will simplify maintenance of our code and possibly allow for the porting of

MT to Windows (Ver. 10) systems	

- some indications that G4 code could be faster	

•  We plan to evaluate (>2016) other technologies: Transactional
Memory, OpenMP 4.0 and CilkPlus are very interesting options	

- as always we want to keep simple user-code migration	

Backup slides	

37

Thread Safety and memory usage reduction	

•  Design: lock-free code during event-loop	

-  Implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	

- read-only part of most memory consuming objects shared between thread:

geometry, (EM) physics tables	

- allows for minimal API change	

Geometry Element (G4VLogicalVolume)	

Shape (G4VSolid)	

Material (G4Material)	

Sensitivity (G4VSensitiveDetector)	

Us
er

-­‐l
ev

el
	

AP
I	

	
 	
 http://dx.doi.org/10.1051/snamc/201404213	

Thread Safety and memory usage reduction	

•  Design: lock-free code during event-loop	

-  Implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	

- read-only part of most memory consuming objects shared between thread:

geometry, (EM) physics tables	

- allows for minimal API change	

Geometry Element (G4VLogicalVolume)	

Shape (G4VSolid)	

Material (G4Material)	

Sensitivity (G4VSensitiveDetector)	

Us
er

-­‐l
ev

el
	

AP
I	

Not invariant:
event dependent energy deposits

	
 	
 http://dx.doi.org/10.1051/snamc/201404213	

Thread Safety and memory usage reduction	

•  Design: lock-free code during event-loop	

-  Implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	

- read-only part of most memory consuming objects shared between thread:

geometry, (EM) physics tables	

- allows for minimal API change	

Geometry Element (G4VLogicalVolume)	

Shape (G4VSolid)	

Material (G4Material)	

TLS reference	

Us
er

-­‐l
ev

el
	

AP
I	

	
 	
 http://dx.doi.org/10.1051/snamc/201404213	

G4VSensitiveDetector	

G4VSensitiveDetector	

G4VSensitiveDetector	

Thread Safety and memory usage reduction	

•  Design: lock-free code during event-loop	

-  Implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	

- read-only part of most memory consuming objects shared between thread:

geometry, (EM) physics tables	

- allows for minimal API change	

Geometry Element (G4VLogicalVolume)	

Shape (G4VSolid)	

Material (G4Material)	

TLS reference	

Us
er

-­‐l
ev

el
	

AP
I	

	
 	
 http://dx.doi.org/10.1051/snamc/201404213	

G4VSensitiveDetector	

G4VSensitiveDetector	

G4VSensitiveDetector	

Run-time determined:
thread-dependent reference to
pointee

42	

Thread Local Storage	

•  Each (parallel) program has
sequential components	

-  protect access to concurrent

resources	

-  simplest solution: use mutex/lock	

•  TLS: each thread has its own
object (no need to lock)	

- Improved support in C++11 standard	

•  Drawback: only simple data
types for static/global variables
can be made TLS	

NB: results obtained on toy application, not real G4	

G4 Ver 10.0.p01	

Visualization with MT	

•  Real-time visualization poses some challenges in a MT application	

-  visualization / workers synchronization	

•  Geant4 solution: adopt producer/consumer paradigm	

- workers produce events: pushed in a shared queue	

-  independent visualization thread consumes (pulls) from queue	

•  Queue has a maximum allowed size	

- Current policy: back-pressure pauses worker threads	

- Under design: “sink” that drops events when too many are pushed	

- Both will be available to the user	

	

Vis	

Thread	

W1	

W1	

feedback	

