The Space Elevator and Geant4

Dennis Wright
Director of Studies
International Space Elevator Consortium

27 August 2015

Geant4 Space Users' Workshop

Outline

- A space elevator primer
- Critical technologies
- A space elevator simulator
- Current activity in the field
- Prospects

The Modern Space Elevator

- First scientific concept:
 - Tsiolkovsky, 1895
 - compressive tower
- Modern space elevator a tether, not a tower
 - tensile structure, gravitationally stabilized
- DARPA study (Edwards, 1983)
 - SE is feasible with strong materials
- Discovery of CNTs (lijima, 1991)

Balancing the Forces

Deployment

- a) Satellite at GEO with pilot strand two deployment spools one up, one down
- b) deployment satellite to apex
- c) first climber ascends tether with second strand
 - climber stays at apex as part of counterweight
- d) subsequent climbers add strands and counterweight mass until design mass is reached

Strong Materials

- Carbon nanotubes
 - strong enough
 - long enough?
- Climbers
 - rollers
 - maglevs
- Other materials
 - boron nitride
 - solar
 - already strong enough to build lunar elevator

Climbers

- Estimated speed 200 km/h
 - determined from likely power available
 - will arrive at GEO in 7 days
- Mass of first climber: 20 tons (14 ton payload)
 - later climbers will be bigger
- Crawlers
 - grip the tether with rollers and pull themselves up
 - problem: no currently designed bearing can survive the number of revolutions required for a single journey to GEO
- Maglev/linear induction motors
 - use tether to carry current, set up magnetic field

Power Transmission to Climber

- Solar power
 - for medium and high altitudes
 - should be more than adequate
- Beamed power
 - ground-based lasers or microwaves for low altitude
 - more problematic
 - deep in gravity well
 - atmosphere
- Tether as transmission line
 - could be configured as coax cable, or single strand with AC power

Solar and Ground-based Laser

A Space Elevator Simulator

- Major goal for ISEC: a software simulation of all aspects of space elevator operation
 - dynamics of tether and climber
 - electrodynamics
 - radiation effects
- Software framework to accommodate
 - different types of tether dynamics code
 - radiation simulation
 - magnetosphere models
 - databases
 - visualization
 - user interface

Dynamics

- Need to solve the equations of motion for
 - longitudinal and transverse oscillations
 - torsion
 - lunar and solar tides
 - moving loads (climbers)
- Example: transverse oscillations on tether in gravitational field

$$\rho \frac{\partial^2 \eta}{\partial t^2} = E \varepsilon_0 \frac{\partial^2 \eta}{\partial x^2} + \rho \Omega^2 \left[1 - \frac{R_G^3}{(R_E + x)^3} \right] \eta - E (1 + \varepsilon_0) \frac{W^2}{12} \frac{\partial^4 \eta}{\partial x^4}$$

- η is amplitude of transverse vibration, x distance along tether
- R_G, R_E are geosynchronous and Earth radii
- E, ε_0 , ρ are Young's modulus, longitudinal strain and density of tether

Dynamics

- Without gravity, previous equation is that for a stiff piano string
 - with gravity, no closed-form solution
 - equations quickly become non-linear when coupling to other oscillation modes
 - complexities mount up with moving loads, tides
- Numerical simulators needed (Runge-Kutta, etc.)
 - well-known problems with stability of solutions
 - discretized tether and finite element approaches being tried

Geant4 Space Elevator Simulation Jobs

- Charging
 - accumulation of charge from space environment
 - spacecraft charging can be severe, especially if there are loose ends, sharp edges
- Radiation pressure (Compton, photo-electric, solar wind)
 - 1 m wide, 10^8 m long tether \rightarrow huge solar sail, effects dynamics
- Radiation damage (CNTs, climber, passengers, ...)
 - upper bound < 3 MRad/yr in radiation belts
 - trip to GEO takes 1 week, passengers require shielding
 - SEE in electronics
 - can DNA physics be applied to CNTs?

Magnetic and Radiation Environment

Geant4 Space Elevator Simulation Jobs

- Modeling the magnetosphere
 - augmented version of Planetocosmics?
- Micrometeorite and debris collisions
 - can treat as Geantinos passing through tether, scoring hits
 - use to design optimal tether cross section (curved, not curved, thickness, etc.)
- Monatomic oxygen
 - dynamics effect of 1 km/s particle impacts
 - simulate frequency of bonding with/breaking CNTs?

Current Activity in the Field

- International Space Elevator Consortium (www.isec.org)
 - a non-profit (501(c)(3)) group of engineers, scientists, writers and artists
 - yearly studies covering single aspects of SE development
 - annual meeting in August in Seattle
- Japan Space Elevator Association (www.jsea.jp)
 - also a non-profit
 - sponsored Space Elevator Games 2009 (climber competition)
- Obayashi Corporation
 - large general contractor company (Tokyo)
 - currently working on linear motor climbers

Prospects

- Schedules
 - ISEC (2035)
 - Obayashi (2050)
- Cost
 - \$10 \$50 billion (< ISS: \$84 billion from US and partners)
 - when SE in operation, \$100/kg to GEO
 - \$22,000/kg for Space Shuttle

Conclusion

- Arthur C. Clarke predicted that a space elevator will be built "about 10 years after everyone stops laughing."
 - most people have stopped laughing
- Space elevator research is going on now
 - Geant4 will play a significant role
- Plenty of work to do!
 - volunteers welcome
 - maybe even funding in the near future

Student Climber Competition

