

Workshop on Memristive systems for Space applications 30 April 2015 ESTEC, Noordwijk, NL

Resistive Memories (RRAM) principles & technology

Dirk J. Wouters

RWTH Aachen, Institut für Werkstoffe der Elektrotechnik, Aachen, Germany

30 April 2015

Outline

- **1. Definition and classification**
- 2. Filamentary switching
 - Oxygen vacancy based (VCM)
 - Metal cation based (ECM)
- 3. Interfacial switching devices
- 4. RRAM array organization
- 5. Status and outlook

Resistive Switching Memories

- Memory element is R (MIM-type 2-terminal)
 - r can be altered by applying V/I on R
 - readout R at low voltage

Folie 3

– Bipolar or Unipolar Switching depending on mechanism

RWTHAACHEN UNIVERSITY

Folie 4

Taxonometry of Resistive Switching Memories : based on Mechanism

Resistive Switching

IWE2

Resistance Modulation Geometry

1D Filamentary		2D Interfacial	3D Bulk Transition			
Thermo- Chemical Fuse/ antifuse	Oxygen vacancy migration	Electro- chemical	Schottky barrier	Phase change	Tunnel Magneto resistance	Electronic MIT (Mott)
TE reduced metal oxide BE	TE	Cation Source (Ag ⁺ , Cu ⁺ or)	TE exchange layer O vacancy, pero vskite BE	TE amorphous BE	TE Free layer Tunnel barrier Pinned layer BE	TE R.Ω low-temp high-temp hig
UNIPOLAR	BIPOLAR	BIPOLAR	BIPOLAR	UNIPOLAR	BIPOLAR	UNIPOLAR
RRAM			PCRAM	MRAM	?	

IWE2 RWTHAACHEN UNIVERSITY

1D Filamentary switching

<u>Unipolar :</u>

- Higher power
- Less cyclability

Indications for filamentary switching

From physico-chemical analysis

K. Szot, Phys. stat. sol. (RRL) 1, No. 2, R86–R88 (2007) / DOI 10.1002

RWITHAACHEN

Indications for filamentary switching

Electrical fingerprint from device characteristics

• Area (in)dependence of LRS/HRS and switching voltages

F.Nardi et al, IEEE Trans. El.Dev. 59(9). 2661 (2012)

RWITHAACHEN UNIVERSITY

Forming: creating a conduction path by "breakdown"

Similar to (soft) breakdown in dielectrics (defect & percolation path generation)

Maximum current during Forming(/SET) controls filament "Strength"

Folie 11

RWTHAACHEN

Y.Satoet al, Trans.El.Dev. 2008

"Scaling of filamentary switching"

- 2D and 3D switching:
 - Current levels scale with area of the cell $\sim F^2$
- ID switching:
 - Current levels independent of cell area
 - Current level determined by filament "diameter"
 - Determined by operation conditions (Forming/SET CC)
 - We can have small current even in large device
 - Limitations ?
 - Cell area ~ filament size..
 - Smallest filament size ?
 - ~ nm ??

W=2

Switching during SET/RESET: SET ∠ Forming

RWTHAACHEN

Absence of oxide thickness effect on $V_{SET/RESET}$ indicative of LOCAL filament switching

Folie 14

RWITHAACHEN UNIVERSITY

Bipolar Switching OxRRAM : "Oxygen Vacancy Migration"

Material : TMO's, e.g. HfO, TiO, TaO..

H.Y.Lee et al, "Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO₂ Based RRAM", IEDM, Tech. Dig.,

Role of oxygen / oxygen vacancy defects in OxRRAM memories

Filament switching involves oxygen transport

Bubbles < O2 released to the gas phase or adsorbed by the grainboundaries of the Pt electrode

Szot et al., Nature materials (2006)

- Filament observations indicate local lower O concent
 - Magnelli phase of Ti_4O_7 or Ti_5O_9 , essentially TiO_{2-x}
 - \rightarrow Oxygen vacancy defects

Oxygen vacancy filament conduction

- Oxygen vacancies influence conduction
 - Electron hopping from one vacancy to another
 - Act as local "doping" \rightarrow thermally activated conduction
 - aka <u>VCM</u> : valency change mechanism
 - Create conductive defect band in Metal Oxide (e.g. at GB)

IWE2

"Oxygen vacancy drift" based RRAM

- Reset/Set :
 - Transport = drift of oxygen vacancies
 - Filament constriction shrinks/expands with drift of oxygen vacancies up/down
 - Closed system:
 - NO Generation/Recombination of V_O

VCM-type switching: Switching mechanism

• Electroforming required

W=2

"Oxygen vacancy drift" based RRAM

Stack

Controlled introduction of oxygen vacancy by **process**

- Oxygen scavenging metal cap layer on top of stoechiometric HfO_2 (ALD)
 - Ti. Hf. Ta....
 - Local formation of $HfO_{2-\delta}$
- Deposition of substoichiometric HfO_{x} (PVD)
- Need for **asymmetric** profile of oxygen vacancies
 - Otherwise competing switching layers [1]

F.Nardi et al, "Complementary switching in metal oxides: toward diode-less Xbad RRAMs", IEDM 2011

HfO₂ RRAM demonstrator

R/W	Driver &	Control L	ogic
BL MUX &			

Process	CMOS: 0.18um 1P4M RRAM: 0.64um 20.48um
Memory Capacity	4Mb (32 x 128Kb sub-blocks)
Chip size	11310um x 165950um (with test-mode circuits)
Device	HV path: 3.3V device Cell array: 3.3V device Peripheral: 1.8V device
ממע	HV path: 3.3V Core: 1.8V
Read-Write Access Time (SLC-mode)	Random access: 7.2ns Burst-mode: 3.6ns

A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns Read-Write Random-Access Time and 160ns MLC-Access Capability

Folie 20

RWTHAACHEN UNIVERSITY

NTHU/ITRI ISSCC 2011 ITIR

IWE2 RWTHAACHEN UNIVERSITY

Conductive Bridge RRAM : "Programmable Metallization Cell"

Electrochemical filament formation

- Oxidation at anode: forming of metal ions (Ag \rightarrow Ag⁺ + e⁻)
- Drift of metal ions through insulating switching layer
- Reduction at cathode: plating out of metal ions (Ag⁺ + $e^{-} \rightarrow$ Ag)
 - Growing filament forms "virtual cathode"

Rainer Waser et al., Adv. Mater. 2009, 21, 2632–2663

U. Russo et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, 56(5), p. 1040, 2009

ECM-type switching: Switching mechanism

23 RWITHAACHEN

SET process

 \bigcirc

Material systems

- AgI, GeSe, GeS_x, Cu:TCNQ
- SrTiO₃, SiO₂, WO_x
- TiO_2 , Ta_2O_5 , HfO_2

Electrodes

- Ag or Cu active electrode
- One inert electrode

I-V Characteristics

- Linear *I-V* in ON state
- Nonlinear OFF state

Switching based on Ag/Cu filamentary growth and dissolution

SET process

Folie 24

Bipolar Switching

Dirk Wouters ESA WS April 2015

Materials and Structures

Ist generation : **Ag-doped chalcogenide** All-in-one, non-homogeneous material 2nd generation: **Metal-Oxide** Cu source separated from switching layer

Folie 25

RWTHAACHEN

SONY ISSCC 2011 CBRAM 1T1R

A 4Mb Conductive-Bridge Resistive Memory with 2.3GB/s Read-Throughput and 216MB/s Program-Throughput

Capacity	4 Mb		
Tile	256Kb		
Process	180nm CMOS		
Chip size	6.8x5.26mm 35.8 mm ²		
Cell architecture	1T-1R		
Cell size	2.24 µm ²		
Power Supply	3.3 V,1.8 V		
Memory / IF clock	125MHz		
Read Size,	128Byte		
Throughput	2 3GB/s		
Program Size,	16Byte		
Throughput	216MB/s		

Figure 11.7.1: Die micrograph and features.

Figure 11.7.2: Array organization.

IWE2 RWTHAACHE

The Time-Voltage Dilemma

How can we make a 2-terminal NVM ?

Fast programming

At ~IV, need programming in ~I0nsec

Good retention

At ~0.1V, need stable read for ~ 10 years

Need operation mechanism with extreme non-linear behavior: >15 orders of magnitude in time over 1 decade in voltage

R.Waser (RWTH/Julich)

W=2

Further comparison of 2 types of bipolar switching RRAM : different kinetics

Oxygen vacancy defect based cells (also called VMC cells)

Menzel et al., Adv. Funct. Mat 2011

- Drift of oxygen vacancies requires strong thermal activation
- \rightarrow Limit of min current (> IuA, typically few 10 of uA's)
- \rightarrow Limits RESET depth

Metal cation based cells (ECM cells) Switching kinetics are limited by

SET kinetics can be

modeled be Eactivation only

- S. Menzel et al., Phys. Chem. Chem. Phys., 15, 18 (2013)
 - Drift of metal cations possible without thermal activation
 - \rightarrow Lower current operation possible
 - \rightarrow Strong RESET
 - \rightarrow compromised retention

Folie 29

IWE2 RWTHAACHEN UNIVERSITY

RRAM Cell and Array configurations

- RRAM element = RRAM cell ?
 - Raw Cross Point array = highest density configuration
 - Cell size = $4F^2$

IWE2 RWTHAACHEN UNIVERSITY

RAW XP LIMITATIONS

- Read errors due to sneak current paths
- Program disturbs on half-select cells (1/2 or 1/3 V scheme)
- Power dissipation due to current through halfselected cells

E.Linn en al, NATURE MATERIALS VOL 9 p. 403 MAY 2010

J.Liang et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, p.2532 OCTOBER 2010

1T1R cell

Transistor is ideal selector

- Both isolation switch and current limiter (during SET)
- 3-terminal device : large cell
- Best suited for embedded RRAM

1D1R -1S1R cell

- Diode selector
 - Good selector : strong asymmetry (rectification) combined with strong (exponential) non-linearity
 - 2 terminal selector on top of RRAM
 - Small cell size possible
 - Only for unipolar switching RRAM
 - Voltage drop over diode
 - Large aspect ratio
- For bipolar RRAM
 - New 2 terminal selectors :
 - "Symmetric" diode type and Volatile Switching types

Folie 32

RWITHAACHEN UNIVERSITY

Folie 33

2- Terminal SELECTOR concepts

unipolar

RWTHAACHEN UNIVERSITY

3D RRAM ARRAY OPTIONS

3D Stackable RRAM

"pseudo 3D" = 2D stacking

M. Lee, et al., IEDM Tech. Dig. 2007

3D Matrix, Semiconductor International, 7 Jan. 2005

RWITHAACHEN LINIVERSITY

3D RRAM ARRAY OPTIONS

IVE2

Self Rectifying Cell

- Cell with strong nonlinearity (in ON state)
- Some proposals, but still limited nonlinearity

RWITHAACHEN UNIVERSITY

Steady improvement of RRAM operation speed & current

Slide courtesy G.Jurczak, imec

IWE2 RWTHAACHEN UNIVERSITY

> 10¹² cyclability in TaOx

Y-B.Kim et al, VLSI Technology 2011

<10nm scalability of HfO₂ RRAM cells

B.Govoreanu et al IEDM 2011

G.Kar et al VLSI 2012

RWTHAACHEN UNIVERSITY

Array Demonstrations of 1T-1R RRAM

Array Demonstrations of 1S-1R RRAM

Column Select . Read/Write circuit

Fig. 1 TEM image of fully integrated crossbar array with the 54nm standard CMOS process technology

ELPIDA Elpida

Elpida announces ReRAM chip, aims to enter market 2013

Peter Clarke

1/25/2012 3:13 PM EST

64Mb, 50nm process, Collaboration with AIST and SHARP

Elpida Memory, Inc. 64 Megabit prototype ReRAM

13 **IV/=2**

RWTHAACHEN UNIVERSITY

Toshiba_Sandisk will announce a 32Gb 1D1R RRAM in 24nm @ ISSCC2013

Storage Capacity [Mb].

Status - outlook

Main issue :

C2C variability, especially for HR/thin filaments (lack of control of defect positions on atomic scale) \rightarrow LRS/HRS distribution overlap

Application :

- embedded NVM (simple process, no HV)
- NAND Flash replacement (2D 3D): scalability
- Storage Class Memories : performance