

Overview of Radiation Test Activities on Memories at ESA

Dr. Véronique Ferlet-Cavrois IEEE Fellow ESA ESTEC, TEC-QEC 30/04/2015

Contact for information: Veronique.Ferlet-Cavrois@esa.int

Outline

- Memories in space applications
 - Different types, usage in space
 - Availability on the market
- Radiation effects
 - Radiation Hardness Assurance
 - $\circ~$ Utilisation of COTS in space
 - Typical examples of radiation effects in memories
 - PCRAM
 - NAND flash
 - SDRAM
 - o SRAM
- Utilisation of COTS in-flight
 Example: SRAM

Memories in space applications

- Program / Configuration Storage (BIOS, FPGA configuration, etc.): PROM / E²PROM, MRAM, NAND/NOR Flash
- Data Buffer (TM, HK, Instrument data, etc.):
 SRAM (async., sync., FIFO, DPRAM), SDRAM
- MPU/MCU Memory:
 SRAM (async., sync.), SDRAM
- Mass Memory
 - Platform Data Handling (OBC MM): SDRAM
 - Payload Data Handling (PDHU, SSR, Compression MMU): SDRAM, NAND Flash

[H. Schmidt, Airbus under ESA contract, Nov. 2014]

Memories in Space Applications Payload Data Handling

4

 \rightarrow 10 Tbit (SAR, new optical instruments)

- **Increase of Data** \rightarrow 10 Gbps (SAR)
- > Introduce of nonvolatile memory to increase storage size at reduced power consumption and weight

ESA UNCLASSIFIED - For Official Use

Market Analysis Overview

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 5

European Space Agency

ESA UNCLASSIFIED - For Official Use

Market Analysis Overview

Volatile Memory

SRAM

- async. / sync. I/F
- FIFO, DPRAM, etc.

DRAM

- Computing (SDR, DDRx SDRAM)
- Mobile (LPDDRx)
- Graphic (GDDRx,...)

Non-volatile Memory

□ ROM / EPROM / E²PROM

Flash

- NOR (1 bit, 2 bits)
- NAND (SLC, MLC, TLC, 3-D)

□ MRAM

PCRAM

□ FeRAM

[H. Schmidt, Airbus under ESA contract, Nov. 2014]

🛛 ReRAM....

Main radiation effects in electronic components

[R. Ecoffet, TNS June 2013]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 7

European Space Agency

ESA UNCLASSIFIED – For Official Use

Radiation Hardness Assurance Application to Memories

ECSS-Q-ST-60-15C Space product assurance – Radiation hardness assurance – EEE components

The flight lot is tested to:

- TID (Co60)
- SEE
 - high and low energy protons
 - Heavy ions
- Comparison to the mission environment and device function

Difficulty when using COTS components

COTS in space

Why use Complexity of function Performance Availability

[L. Adams, Radiation training course May 2003]

Drawback

Little or no traceability Rapid and un-announced design and process changes Rapid obsolescence Packaging issues (plastic) Effects of burn-in on radiation effects Deep dielectric charging in space

Use of COTS

The use of COTS does **NOT** necessarily result in cost saving Increase of the **RISK**

Real systems use a large variety of IC technology and generations, Different TID hardness levels

IC Function

Compilation from data workshops between 2002 and 2004

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 10

Examples of radiation effects in memories

PCRAM

o TID

SEE: functional failures, SEFIs

Other memory types

- NAND-Flash memories
- o TID
- Destructive events
- SDRAM
- o Stuck bits
- o SEFIs

SRAM

- o MBU
- Sensitivity to low energy protons
- In-flight example of Latch-up

PCRAM

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 12

European Space Agency

ESA UNCLASSIFIED – For Official Use

Micron (ex-Numonyx) Omneo P8P NP8P128A13TSM60E phase change memory Radiation test results

1. TID tests

- a. Co60: No functional failure up to 700 krad(Si) (also after annealing following irradiation)
- X-rays: No functional failures before 1.6 Mrad(Si), with one still functional above 4 Mrad(Si)

2. SEE tests

- a. Few SEUs under heavy ions at grazing angles
- [S. Gerardin, et al. IEEE TNS 2014]

- b. latch-up in all operating conditions,
- c. to a minor extent single event functional interrupts, and bursts of read errors.
- d. Permanent functional failures were also observed in one revision of the chips.
- e. No events observed under high energy protons
- 3. Despite the very good TID tolerance, SEL may prevent these devices to be used in space.

[S. Gerardin, M. Bagatin, A. Paccagnella, U. Padova, 2013, ESA contract]

TID test of the Omneo P8P NP8P128A13TSM60E phase change memory

[S. Gerardin, M. Bagatin, A. Paccagnella, U. Padova, 2013, ESA contract]

SEE test of the Omneo P8P NP8P128A13TSM60E phase change memory

- Revision B of the die exhibited functional failure at low LET (3.3 MeVcm²/mg)
- ➢ Revision A: SEL, SEFI

- In one case, sudden spike in the supply current, which after less than 1 s went back to its normal value, likely due to a logic conflict triggered by an SEU
- A previous report [O'Bryan et al. REDW 2010] indicated a lower SEL LET_{th} than found here, but likely due to different chip revision

LET [MeV·mg⁻¹·cm²] [S. Gerardin, M. Bagatin, A. Paccagnella, U. Padova, 2013, ESA contract]

SEE test of the Omneo P8P NP8P128A13TSM60E phase change memory

[S. Gerardin, M. Bagatin, A. Paccagnella, U. Padova, 2013, ESA contract]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 16

- Errors signaled by dedicated bits in the status register (SR). Other times, the SR reports a successful operation, but a following read showed that the array had not been properly programmed
- Single Event Functional are likely due to heavy-ion strikes on sensitive regions of the microcontroller (few thousand bits)

SEFI recovery:

- At low LET: reset is effective most of the time
- At high LET: a power-cycle is required in 50% of the cases
- In few cases, repeating the operation is enough

Radiation effects in different types of memories

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 17

NAND-Flash TID: Errors in Storage Mode

[K. Grürmann, IDA, ESA contract 2012-2014]

- functional breakdown of each DUT is marked with dotted line
- first random data errors already between 5 and 10 krad(Si)
- Destructive Failure between 32 and 64 krad (Si)

NAND-Flash TID: Errors in Refresh Mode

- Refresh every 2.5 krad(Si)
- first random data errors already between 3 and 30 krad(Si)
- periodic refresh keeps the error share below $1 \cdot 10^{-5}$, tolerable before ECC
- Refresh has no influence on the Destructive Failure
- with periodic refresh the Destructive Failure occurrence determines the total dose Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 19 European Space Agency

Single Event Hard Errors: stuck bits

Samsung 1Gbits DDR1 SDRAM

Hyundai 64-Mb SDRAM

Large part to part variations

[Edmonds 2001]

Micro-dose or displacement damage

[Edmonds 2008]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 20

ESA UNCLASSIFIED – For Official Use

20

DDR3 results – Stuck bits

Stuck bits: can not be removed by rewriting

[M. Herrmann, IDA, ESA contract 2012-2014]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 21

ESA UNCLASSIFIED – For Official Use

Stuck bits in NAND-flash

[K. Grürmann, IDA, ESA contract 2012-2014]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | \$

ESA UNCLASSIFIED - For Official Use

Destructive events in NAND-Flash

[K. Grürmann, IDA, ESA contract 2012-2014]

Samsung 8Gb NAND-Flash

Thermal picture charge pump region

[F. Irom, TNS Feb. 2010]

- Permanent damage with definite data loss
- 16 Gbit Micron shows also other DF types affecting the on-chip microcontroller

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 23

Multiple Cell Upset in SRAMs

40nm SRAM Tilt=0, Roll=90, Xenon, UCL

[ESTEC contract 18799/04/NL/AG Hirex SEE test report, HRX/SEE/0288 STMicroelectronics 40nm SRAM test vehicle]

One ion strike can induce more than 100 cell upsets

SEU sensitivity for low energy proton in SRAM from 90nm and beyond

Devices with very low LET thresholds are sensitive to proton-induced upset by **direct ionization**.

Proton Sensitivity 65-90nm SRAMs

[B. Sierawski, TNS 2009]

[H. Puchner, REDW 2011]

Low energy protons sensitivity in 28nm SRAMs STMicroelectronics

Method needed to calculate the SEE rate due to low energy protons in space

[H. Kettunen, et. al. IEEE REDW 2014] ESA contract

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 26

In-flight example SRAM Aboard Proba-2

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 27

GPS receiver: latch-up events in 512kx8 SRAM Samsung K6R4016V1D-TC10

The GPS counts two redundant receiver units and a current limiter; in cold redundancy logic

Proba-2: polar LEO

Samsung K6R4016V1D-TC10 DC 220 TANO6EE KOREA

The devices were unsufficiently tested before flight

¹⁸⁰ [*M. D'Alessio, et al. ESA at RADECS 2013*]

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 28

Statistical analysis of the GPS latch-up events from Oct-10 to Dec-12

European Space Agency

- Average upset rate of 12 SELs/month (0.4 SEL/day)
- Large variability, from 6 to 27 SELs/months
- 87% SELs are in the SAA

Statistical analysis of the GPS latch-up events (cont.)

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 30

The ground tests of the Samsung K6R4016V1D-TC10 shows large differences vs. Date Code – Heavy ion test

Heavy ions

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 31

The ground tests of the Samsung K6R4016V1D-TC10 shows large differences vs. Date Code – Proton test

Resistive memories workshop | Véronique Ferlet-Cavrois | ESTEC | 30/04/2015 | Slide 32

\circ Test the flight lots

- \circ <u>Test</u> in the application conditions
- <u>Test</u> to the environment specifications

Test standards: ESCC22900 TID ESCC25100 SEE

RHA ECSS-Q-ST-15C

Find information in: www.escies.org