

RADIATION HARDNESS OF MEMRISTIVE SYSTEMS

A. FANTINI
ON BEHALF OF IMEC RRAM TEAM AND VU ISDE TEAM

Workshop on Memristive systems for Space applications ESTEC - 30/04/2015

OUTLINE

- Introduction
- RRAM for space application
- Reliability: SEU
- Reliability:TID/DD
- Conclusion

IMEC EMERGING MEMORY ACTIVITY

We will focus on Oxide based RRAM (OXRAM)

Vacancy migration switching mechanism

Several flavors of resistive memory technology at research stage in imec

OXRAM ITIR CELL EXPERIMENTAL SAMPLE

Crossbar device RME 40x40nm

Unhardened 65nm FEOL node

RRAM FEATURES

Fully functional sub 10nm device

Fantini et al., VLSI 2014

Many interesting results... For which applications?

POTENTIAL RRAM APPLICATION

RESEARCH GOALS

Many research work on radiation robustness of resistive memory element (filament) alone

However very few research on the robustness of the basic ITIR cell structure...

- For reliable assessment on space application is needed to evaluate IT – IR interaction
- ► Impact of SEU, TID, DD

BASICS OF RRAM TESTING

WL Pulse

Pulsed operation:

5ns Pulse on WL

DC read @ 0.1V

after pulse

- Cell functionality assessed by DC and pulse before irradiation
- Two logic state can be defined

Single Event Effects

RELIABILITY ISSUE

 Single Event Upsets (SEUs)
 mobile generated charge collected at a sensitive circuit node that causes the node to change states

Martin Mason, EE Times, May 2006

SEU IN RRAM

- RRAM subject to SEU in HRS state. Voltage spike due to collected charge can trigger HRS-to-LRS transition
- ► No SRAM-like regenerative action. Impact cumulates trough multiple events (MEU)

SEU DETECTION BY LASER TESTING

- ► Two photons are absorbed to generate an electron-hole pair
- Goal is to emulate charge generation from heavy-ions

Allows to focus trough Si substrate, but generate wide shape of charges

TPA EXPERIMENTAL SETUP

- I260 nm wavelength
- 150 fs (nominal) pulse width
- 1.2 um (charge gen spot size)
- 60 pJ-5nJ energy
- 0.1 um stage resolution in x,y,z

Photodiode to record each incident laser pulse energy

IMPACT OF STRIKE LOCATION ON SEU

Unselected ITIR cell HRS state, Vg=0, VB=1.8

In WC condition a clear dependence of SEU vs strike location can be obtained

Upset events vs strike location

SEU DETECTION BY IRRADIATION

Vanderbilt Pelletron

- 250 keV 4 MeV protons
- 500 keV 6 MeV alpha particle
- 14.3 MeV Oxygen
- 16 MeV Chlorine

Lawrence Berkeley National Lab

4.5, 10, 16 MeV/u ion cocktails

IN SITU SEU MONITOING

- ΔR is exponentially related to the applied voltage, likewise the threshold for upset
- Same as TPA, with 0.7 V minimum voltage for upset

Total Ionizing Dose / Displacement Damage

RELIABILITY ISSUES

- ► Total Ionizing Dose (**TID**)
 - radiation generated oxide trapped charge causes devices to perform out of specification (increased off state current, STI leakage)

X-rays

T. R. Oldham, TNS, June 2003

(4) RADIATION-INDUCED

INTERFACE TRAPS WITHIN SI BANDGAP

- Displacement Damage (**DD**)
 - atomic displacements caused by incident particle collisions results in reduced minority carrier lifetime, as well as reduce mobility

Proton

EXPERIMENTAL SETUP

TID testing: 10 keV X-ray ARACOR irradiator

DD testing: Pelletron accelerator

50 *in-situ* AC switching after each exposure

- ► Pulsewidth: 5ns
- Voltages: 1.8V SET/RES

 High speed package mounted to end station of Vanderbilt's pelletron accelerator

UNHARDENED MOST DEGRADED AFTER TID

- NMOS biased in off-state during irradiation
- ► NMOS IOFF current degraded

SWITCHING PRESERVED IN ITIR RRAM CELL

Test condition:

PW=5ns, |V|=1.8V 50 clycles/exposure Bias: Unsel.OFF

 ITIR RRAM resistive (logic) window unaffected by strong ionizing sources

UNHARDENED MOST DEGRADED AFTER DD

Irradiation conditions: Vg = Vs = Vb = 0VVd = 1.8V

NMOS IOFF current degraded (factor 100x)

ITIR CELL DEGRADED AT HIGH FLUENCE

imec

Test condition:

PW=5ns, |V|=1.8V 50 clycles/fluence Bias: Unsel.OFF

Normal LRS level can be recovered

Stephanie L.: Weeden-Wright, et al. IEEETNS Vol 61, pp2972-2978

BIAS INDIPENDENT DEGRADATION

 Same degradation independently from biasing condition (OFF-biased vs floating terminals)

PHYSICAL PICTURE

R. Degraeve, *et al.*, IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 904-911, April 1998.

- Random uniform radiationinduced vacancy
- Filament formed by random radiation-induced vacancies
- Original conductive filament

- Degradation only due to displacement in oxide
- DD damage randomly generate Vo defects
- Device degradation apparent only when a percolating path formed in // with filament

DEMONSTRATION OF FULL-RECOVERY

- Pristine resistance window can be recovered
- Short pulse switching restored after recovery

OUTLINE

- Introduction
- RRAM for space application
- Reliability: SEU
- Reliability:TID/DD
- Conclusion

CONCLUSION

- Unselected ITIR RRAM cells are vulnerable to SEU in HRS state. LET to trigger depends on BL voltage
- Damage in access transistor does not cause degradation of ITIR RRAM performances.
- No degradation of RRAM performances in TID testing up to high doses (I Mrad)
- Recoverable degradation of RRAM resistive window in DD test, high fluency condition
 - Attributed to Radiation-Induced percolating path formation of conducting defects → "Burned trough cycling"

VANDERBILT UNIVERSITY ISDETEAM

Research capabilities:

- Physical modeling of radiation interaction with semiconductors
- Radiation-aware EDA model development
- Rad-hard circuit and IC design

Applications include:

Aeronautics

Aerospace

Defense Systems

Information Technology

Medical

