
Standard-Based Automation: Scalability, Flexibility and Exchange for Long Term Missions

Workshop on Simulation for European Space Programmes (SESP)

24-26 March 2015

ESA-ESTEC, Noordwijk, The Netherlands

Nieves Salor Moral

(1)
, Dionisi Simone

(2)
, Massimiliano Mazza

(1)

(1)

Vitrociset Belgium

Huygensstraat 34, Noordwijk, 2201DK, Netherlands

Email: n.salor_moral@vitrocisetbelgium.com, m.mazza@vitrocisetbelgium.com

(2)
Vitrociset Belgium in Germany

Lise-Meitner-Strasse 10, 64293 Darmstadt (Germany)

Email: s.dionisi@vitrocisetbelgium.com

INTRODUCTION

Although each year several new missions begin, several more can be found in different stages of their life cycles.

Nevertheless, all of them have to communicate with the ground stations in order to perform tasks, calibrate instruments,

position themselves, etc. These processes are critical and a small failure may increase hugely the costs and throw away

months of work. This complexity multiplies exponentially when several spacecrafts work together in a multi-domain

environments, multi-satellites systems, etc.

The main part of the problem comes from the involvement of different tools for each mission and/or different parts of

the complete lifecycle of spacecraft activities (e.g. creation, testing, operational, maintenance, storage).Therefore, the

reusability and interoperability between systems/missions is somewhat a problem creating the need for new software to

be added each time subsystems integration is required instead of scaling the software and unifying the needs and

interfaces.

After interviewing several stakeholders and assessing the lessons-learned from previous projects, the main requirements

of new and future automation space systems became clearer for being scalable and maintainable. Automation systems

need to rely in the design of a formal component-based architecture which can be plugged and ported directly to other

systems without risking inconsistencies or needing to develop extra components.

However, when trying to unify automation techniques with space standards, another issue appears. Nowadays, there are

different systems that try to improve the MMI experience when creating and maintaining activities of type procedure.

However, not only different versions of systems and procedures create problems of reusability and harmonization, but

also the root understanding of what a procedure can do and cannot do, varies as the handling of the activities and

commands.

Besides, most projects are born with heritages, both technological and operational/procedural. Project stakeholders or

simply commercial partners want to reuse their know-how and background experience as-is (e.g. developed with non-

homogeneous and very different tools), generating problems of interoperability between stakeholders. For example, the

same activity may be defined twice for different missions, or the same functionality to be applied in different systems

are incompatible, hereby losing time and resources and increasing the costs of new missions that could be avoided by

standardizing the procedure preparation methodology.

In order to alleviate this bottleneck and based on our expertise in automation systems as a joint effort between the

European Space Agency (ESA) and Vitrociset (VTCB), procedures will be set as the system automation core. The new

system, named ASE5, tries to establish the foundations for future developments as a proven and validated system in the

hopes of building expertise prior to the participation within the European Space collaboration known as European

Ground-Segment Common-Core (EGS-CC) explained in [3].

In order to be considered for the EGS-CC, the new system had to follow all the ECSS Engineering standards, including

[1] and [2]. The first one describes the procedure language to implement, while the second the data model known as

Space System Model (SSM) which contains the spacecraft information to be stored. Furthermore and to increase the

number of future users, the system should merge the best points of the most commonly used procedural environments

(e.g. MOIS [4]) and those of the previous releases of ASE into the unified system that constitutes ASE5 to improve the

user-friendliness and easiness of the procedure creation.

In summary, ASE5 provides a complete environment for the preparation, simulation, management and operation of

activities (overall procedures compliant with the standard 70-32) around the influence of the populated SSM. Each of

the functionalities to be implemented, based on the requirements validation, is completely decoupled and self-contained.

This way, customers can adapt the required deployment to their specific needs being able to upgrade functionalities at

any moment. In order to improve the interoperability of the procedures, the system follows a formalized approach based

on the complete formalization of the requirements, the data and business models of the system and, in consequence, the

standards of the SSM (70-31) and the procedural language (70-32).

SYSTEM CONCEPTS AND REQUIREMENTS

The information contained in the data model structure named Space

System Model (SSM) represents the functional decomposition of the

space system as a tree-like structure for elements of both the space

and ground segment. The SSM contains data structures identified as

objects. The recognized object types are System Elements (SE),

Activities, Reporting Data (RD) and Events.

The SSM elements definitions are:

• System Elements (SE from now on) correspond to the

elements resulting from the functional decomposition

defined in ECSS-E-00 and ECSS-E-70.

• Reporting data (RD from now on) comprises parameters

and compound parameters. It is associated to the SE.

• Activities are the monitoring and control functions. The

term refers, in general, to procedures, telecommands and

any function provided by the EMCS. An activity is

associated to a SE.

• Events are associated with SE, RD and Activities and are

occurrences of set of conditions that can arise.

The relationships between the former data structures are based on containers, where a SE contains the activities which

can be executed within; the information describing the SE is called RD and the events to be handled during an

execution of an activity are also contained within the container SE. Any SE can comprise other SEs as sub-elements.

In the scope of the SSM, an activity is understood as a space system monitoring and control function implemented

within the EGSE or any other mission control system. The possible implementations of activities are telecommands,

procedures compliant with the European standard ECSS-E-70-32 and operating system commands.

Procedures, as the core of the system, will need to be compliant to the semantics of the standard. They have a well-

known structure (see Fig.2) to ensure the activity goal is satisfied and a control management can be performed to define

the process flow. In the system, two different languages are accepted for defining procedures. As such, several other

input methods can be allowed to improve the user experience by accepting other procedure formats while the respective

mapper between the input format and the 70-32 is provided.

SYSTEM ARCHITECTURE

ASE-5 is planned to be the baseline product of VTCB and to give support to different external applications. In order to

achieve these high-expectations, the system is scalable, portable and flexible while secure, safe and robust in its design.

Figure 1.SSM Hierarchy Example

Figure 2 Procedure Structure

Although in principle these properties seem to oppose each other, new technologies allow them to merge and take their

advantages for a common-goal.

In order to be scalable and flexible, the design has made use of a tailoring of the Service Oriented Architecture by using

some principles of the SCA[5]. The main idea of these architecture patterns is to allow new applications/services to be

added without any need to modify already existing ones. Also in case one already existing component changes, it will

not impact the rest of the system due to the encapsulation of its logic.

Unlike SCA, the portability of the system is achieved via three manners:

• The use of the Java programming language in the implementation, hence providing OS portability.

• The use of a light-weight ESB[6] as linking and central point of the architecture. It will allow for several types

of deployments depending on the client needs (e.g. from a local deployment in one machine to a completely

distributed and remote one).

• The use of open-source portable tools and libraries, when required but based overall in the de-facto standards

EMF and XML for RCP applications, so data models and architecture wise

The architecture design based on standard architecture patterns and the use of already tested and approved libraries and

tools ensure the system safety and robustness. However, besides those measures, the system will provide a component

for the secure management of the information and its safety which can be updated with new security mechanism and/or

rules depending on the platform/devices it is intended to be used.

Regarding the dependencies with the data sources of the system, the architecture has been designed to access the data

sources independently for the services calling the request. This decoupling design decision has been taken due to the

highly possible need to change or modify the data model or the database engine in the future. In this way, services do

not need to know which database engine is being used or how the model is organized; only the interface of the data

source and the route to be followed will be configured, based on the deployment requirement and secured by

encryption.

System Modules

The diagram below shows a logic representation of the system architecture. In this architecture the system core is

composed by the SSM Product and the Activity Execution Compiler and Engine. The management of the space system

model data and its consistency is the responsibility of the first one, while the automatic activity execution and procedure

compilation is managed by the second one. It is undeniable there is a dependency between them since procedures are

part of the SSM and internal references within a procedure to other SSM elements exist.

In order to create light applications which later can be ported to the Web and other devices, most of the heavy tasks are

performed in the server machine(s) where the databases, data model engines and the activity executor engine are

located. This decoupling between client and server requires constant communication between them to pass data. This

information stream will also have to be shared between all clients which are connected in real time. The sent/received

information not only has to be managed in a secure way but has also to be guaranteed to the users to not lose any data

packet. The architecture allows this communication by the implementation of web-services.

Figure 3 ASE-5 System Modules

With maintainability, consistency and improvement capabilities in mind, all views have been created following the RCP

mechanism through the eclipse SWT library. As the system has to answer to the preparation and operations of

automatic activities, the views have to be user friendly, oriented to the goals to achieve (i.e. SSM browser, procedure

edition and activity execution viewer) and to not distract the attention of the users while improving their performance.

Therefore, the main client components offered by the systems are:

• SSM Viewer/Editor displays the SSM data model in a tree-like structure while allowing partial views for

deeper details (e.g. properties view per elements). This view will communicate in both synchronous and

asynchronous way with the SSM Server. Synchronously whenever there is a specific request for information

(e.g. in a refresh call or when asking for further details) and asynchronously for the receiving the change

notifications from other users.

• Procedure Editor allows the edition and display of the procedure scripts in different formats and grammars.

The editor provides content-assist, syntax highlight, semantic validation, folding and collapsing, formatting,

etc. Its use has to be straight-forward with a small learning curve so it does not require a deep knowledge of

the procedure language. Therefore the editor allows textual and graphical definitions sharing the same

procedure data model which will be escalated in the future with more formats (e.g. tabs or tables) and also

adding different languages (e.g. JAVA, C or ADA).

• Activity Execution Viewer displays the execution trace of an activity so an operator can not only verify the

result of the execution but also modify the flow sending signals to the execution (i.e. abort, pause, resume) and

browse through the execution in detail and check the timings, execution and confirmation status of each task

executed. For an activity of type procedure, the view contains the full decomposition of a procedure in its

smaller tasks, so the operator can see the specific process flow.

• Scheduler Editor/Viewer allows operators to create and display activity schedules. This display communicates

with the schedule executor and the activity executor for retrieving the execution data and to prepare an

execution plan.

The previous views are fed by the data provided from the functionalities implemented in the following modules in the

server:

• SSM Product implements the Space System Model and the management mechanism of the data contained in

the different source formats.

• APOFIS Product is responsible for preparing, compiling and executing activities contained in the SSM

product. It also allows scheduling already prepared activities. The APOFIS component can be further

decomposed into the following components:

o Activity Editor/Executor is responsible for preparing and automatically executing simple and complex

activities.

o Schedule Editor/Executor offers the possibility to create and execute activity schedules

o Parser / Compiler is responsible of parsing activities of type procedure, notifying all lexical, syntactic

and semantic errors, and in case there are no errors, generating the activity executable code. As well

as translating from one input procedure language into another.

• Reporter manages the creation, edition and display of reports based on the gathered information of the system.

• Logger provides the functionality of logging relevant information about the system working process and user

interactions during the system execution time.

• Consistency Check Product performs data consistency check. To that end, it interacts with others components

such as the SSM, in order to assess the existence and the reachability of individual space system objects and to

check the consistency of the element referred in activities of type procedure. The consistency check is

accomplished according to the checked object: i.e. a database, an SSM or an activity of type procedure. The

database consistency check is performed verifying that the values in the table enforce one or more constraints,

whereas, the SSM consistency check is carried out verifying that all the referred information exists in the data

model and the execution contexts are correct. The activity of type procedure is consistency checked against

only the SSM since the SSM contains all required data definition needed by the execution environment.

• Session Manager Product provides means for creating, selecting or archiving an operational configuration per

session.

• Configuration Management Product provides a flexible and intuitive entry point to define the desired

configurations relevant to the operations to be run.

• Authentication & Authorization product manages the user roles by which the system determines the level of

system access in accordance with user privileges.

Procedure Harmonization Management

In the European Space Agency, the automation is performed through procedures and although there is not a unique

format for the procedures used, the official standard for ground segment procedures is the 70-32. Thus, this system

automation is performed through the execution of procedures compliant this standard.

Based on Vitrociset expertise in the automation field and the opinions of some final users, one of the major issues with

the implementation and use of this standard is the complexity and understanding of its grammar. Before implementing

the procedure editor and the execution engine, its whole behavior had to be clarified and had to match the one the final

users are expecting. As such a preparation process (i.e. [7]) was performed by creating formal data and process models

of the procedure standard. After receiving verification approval from ESA, a procedure meta- model was generated (see

snapshot in the image below).

This meta-model has been implemented with the EMF technology

to create java data beans These data beans are used during

execution to perform the approved process model through the

object oriented approach instead of working directly with database

objects. The population of the beans is performed through the

allowed editors.

By default, the system comes with two editors integrated. These

two editors are implemented through the latest technology named

Xtext. This technology offers the possibility to automatically

generate an out-of the box editor by defining just the grammar. As

it is also based in the EMF technology, the grammar easily

instantiates the existing procedure meta-model by specifying one

to one the mapping among the beans fields and the procedure

input. Besides, cross-references to the SSM Model are also part of

the grammar to invoke other activities or to get properties from

reporting data, system elements or events.

For each grammar, the system has to manually implement only the

specific validation requirements, formatting rules, outline views,

user templates and information scoping. The rest is either shared

between grammars or automatically generated (e.g. label and

content providers, lexical and syntax checks or consistency checking).

The grammars integrated are the meta-grammar, which is based on an XML format for improving its interoperability

and exchange of procedures, and the PLUTO one, which is the example and most commonly known for the standard

uses and is based on natural language.

The user can define the procedures in any of the two grammars as they are fully compliant with the meta-model. This

approach allows the automatic translation from one editor to the other and the synchronization of the information

among them so the user can edit in the preferred editor although originally has been defined with the other. This feature

permits to reuse all procedures already created for existing missions (like VEGA) without any further effort.

In the future, new grammars can be plugged-in the system if they are compliant with the standard, thus with the created

meta-model. The translation between grammars is automatic since the instance of the beans only need to use the

content-providers automatically generated when defining the grammars.

However, users may want to also reuse those procedures created in no compliant languages (e.g. TOPE/MOIS, C, Java

or JavaScript). For this use case, the system will need to create only external drivers to be plugged from those languages

to the compliant ones. This effort is currently being tested with the assessment of including OTX automotive standard to

the space sector.

Once the beans are populated, the input format of the procedure is no longer a decisive factor. Thus, only one execution

engine has been implemented instead of several ones. This approach has allowed the system to decouple completely the

view from the logic, thus reducing the impact if the grammar is modified according to user needs and properly test both

parts.

Figure 4 Procedure Meta-Model

SYSTEM USER CASE

Having a complete, unique system providing every feature to every space user (i.e. operator, architect, scientific or

tester) is the goal ASE-5 tries to achieve. Nevertheless it has to be usable, efficient and reliable. A typical use case

where the system may be applied is the connection of a user for preparing one or several procedures for a test campaign

and their simulations to assure the results are the expected ones prior to upgrade them into operational status. The

system allows creating/editing procedures in the language of the meta-model or in the PLUTO language defined in the

standard.

System Access Modes

ASE-5 is an environment for procedure/activities preparation and execution with two main operational modes

(preparation and execution which can be in:

• Stand-alone mode (without connecting the application to the target SSM Database Implementation, e.g. the

ESTEC Database reference facility) which will behave as simulation.

• Integrated mode (connected to the target SSM Database Implementation).

When a user connects to the procedure manager, his role determines the operational mode. While in preparation mode,

activities and schedules can be edited and the user can run procedures for testing. However, commands cannot be sent

to the operational system. Some Dry Run Servers simulate the behavior of the device where the procedures run in case

the user wants to test the procedures in stand-alone mode. In both modes, the user will have the same experience since

there is no discontinuity of the user interface.

SSM Perspective

The first view of the system after connection is the Space System Model viewer. This is the single view where the user

can access all the space information and can verify its consistency.

The central view shows the structure of the current Space System. A tree navigation system (i.e. a tree that allows the

user to expand / collapse nodes) is offered to explore the Space System Model.

Moreover the system offers the user the possibility to have a direct way to assess the Space System Model while

browsing it, selecting the elements on the tree and, according with their type, executing some functionality (i.e. editing,

importing, exporting, validating).

At the bottom of the application view the user has the status bar with the status of the SSM connection with the database

or with information about the element selected on the central view

Procedure Edition/Creation

Figure 5 SSM Perspective HMI

After the user has connected to a Space System Model, the user can select the activity of type procedure to be defined

and the procedure editor will be opened. Depending on the extension of the script the system will load the specific

editor and the content will be automatically loaded.

Synchronously with the edition the system loads the semantic structure of the procedure also known as AST in the

Outline view. As soon as the user modifies/creates an allowed and correct structure, it will appear in the AST.

To improve the user experience during the edition, the system highlights the syntax that belongs to the selected

language (PLUTO or metadata) and provides different

functionalities like auto-completion and content-assist or auto-

formatting of the text.

The user can decide to compile the procedure at any moment and

when there are compilation errors the system highlights them on

the editor with a tooltip describing the error found. The system

also executes automatically a consistency check controlling if the

SSM elements contained into the procedure have existing and

accessible references to the working SSM.

For some kind of errors (e.g. missing declaring variables and events), together with the error symbol, there will be a

proposed quick fix icon (i.e. a bulb) which will automate the solution.

Activity Execution/Simulation

When an activity has been prepared and it is considered valid (in case of a procedure, this means compiled without

errors); the user can decide to execute

an activity on the SSM. In that case

he/she should right click on the activity

and select the menu option “Execute

…..” (The name of the option changes

accordingly with the activity type).

If the activity is a procedure, the system

will compile it automatically and it will

return a message to the user in case of

compilation errors. Otherwise the

system will check if any argument is

needed for the right execution of the

activity and if so, the system will

request the user to provide the

Figure 6 Procedure Edition Perspective

Figure 8 Quick fixes provided

Figure 7 Editor capabilities

Figure 9 Activity Execution View

Figure 10 Alphanumeric Displays

information prior to execution and validate it depending on the argument type.

Once, the verification of the activity is performed, the system will load the activity in the Activity Executor View and it

will update its execution and confirmation status according with the status received from the other application (i.e.

SCOS 2000 in case of TC, scripts or command execution result in case of OSC or the procedure engine otherwise.).

During the running of the activity the user can decide to abort / pause and consequently resume the execution of the

activity (if the external application allows this kind of operation).The system will highlight the different statuses of

execution. After the execution of an activity is completed the user can remove the execution instance from the view.

Alphanumeric Display

Another aspect of the activity execution is the monitoring of the received telemetry (or reporting data as it is understood

in the system). This information can be used to alter the action flow or perform some tasks.

The AND display shows in real time the engineering

value of the reporting data present in the display. To

add a reporting data to be monitored, the user has to

select it in the Space System Model perspective and

drag and drop the element onto the AND view. As soon

as a change in its value is received in the client, it will

be modified in the view. For improving the monitoring

purposes, the view will highlight with colors the status

of the reporting data according to its limit and validity

checks.

The view also gives to the user the possibility of

removing a single reporting data, remove all if the monitoring is no longer important and to save or load a predefined

list of reporting data for a specific test/operation campaign.

CONCLUSIONS AND FUTURE WORK

In this paper the most important features of the newly developed automation system named ASE-5 has been explained.

In its design and development an important effort of working with space standards have been applied. To increase its

validity and long-term durability, the architecture developed has been implemented with the latest technologies and

based on model instead of long-existing ones and hard-coded features.

Although Vitrociset has gambled that the automation in space is going to be performed through procedure and formal

models, the system wants to also be used by current users and missions. This is achieved by allowing instead of a

single/future format we want to achieve a non-closed set of formats including programming languages, non-European

formats, etc. with little manual effort without having to modify at all the execution engine.

Although this release still needs further work and improvements, the base of the functionality is already set and deeply

tested.

REFERENCES

[1]ECSS-E-70-32C - Ground systems and operations-procedure definition language; issue 2.0,July 2008

[2]ECSS-E-70-31C - Ground systems and operations-Monitoring and control data Definition; issue 3.0. July 2008

[3]Walsh,A; Pecchioli, M; Charmeau, MC; Geyer,M.; Parmentier, P; Rueting, J; Carranza, JM; Bosch, R; Bothmer, W.;

Schmerber,PY.;Chiroli,P. “The European Ground Systems Common Core (EGS-CC) Initiative”; 11-15 June 2012.

SpaceOps2012.

[4]Heinen,W.,Reid.S,,Varadarajulu.S;“Automation through On-Board Control Procedures: Operational Concepts and

Tools” 25-30 April SpaceOps2010.

[5]Laws,S., Combellack,M., Feng,R., Mahbod,H., Nash,S;”Tuscany SCA in Action”; February 2011; ISBN:

9781933988894

[6]Rademakers,T.; Dirksen,J.; “Open Source ESBs in Action”; Manning Publications Company, 2008

[7]Salor Moral, N; Dionisi,S.; Mazza, M.; ”Model Conceptualization of a Procedural Standard for Improving

Interoperability”; SpaceOps2014 “in press”.

