
T-EMU 2.0: Next Generation Emulator

The Terma Emulator Evolution
Dr. Mattias Holm <maho@terma.com>

© 2015 Terma A/S 2

● Outline

– Emulation in General

– State of the Art

– T-EMU 2.0
● The Emulator Core

● Memory System

● The Emulator API

● Performance

– Future Directions

© 2015 Terma A/S 3

Emulation in General

● Micro-processor simulator

– Instruction level simulation

– Interpretation
● Decode-dispatch

● Threaded

– Binary translation

– Virtualisation
● Normally no timing accuracy

● Memory simulator

– Memory attributes (breakpoint, SEU, etc)

– Virtual memory (MMU)

– Access times

● Device models

– Not related to the emulator core directly

– Integrated with memory models

– Need at minimum: MMIO events, timed events, ability to raise IRQs
and ability to write to memory

© 2015 Terma A/S 4

State of the Art

● Binary translators

– OVPSim

– Windriver Simics (~350 MIPS)

– QEMU (partially GPL)

– SimLEON

● Interpretation (SPARC emulators)

– TSIM (~60 MIPS)

– ESOC Emulator (65 MIPS no MMU, 25 MIPS with MMU)

– T-EMU 2.0...

© 2015 Terma A/S 5

T-EMU: The Terma Emulator

● T-EMU 1:

– Derivation of ESOC Emulator Suite 1.11

– Formed the baseline for the work on ESOC Emulator Suite 2.0

– Written in EMMA: The Extensible Meta-Macro Assembler
(embedded assembler, using Ada as host language)

● T-EMU 2:

– Complete rewrite

– Using modern C++11 and LLVM

– LLVM compiler tools are used extensively

– Interpreted, but ready to upgrade with binary translation
capabilities

– Significant work spent on defining a device modelling APIs
● Can easily be wrapped for scripting languages (e.g. prototype your

device model in Python) or SMP2

– Can emulate multi-core processors

© 2015 Terma A/S 6

T-EMU 2.0

● Major Areas of Focus

– Emulator Core
● Instruction level simulation with static timing

● Designed for performance and flexibility

– Memory
● Memory spaces and memory accesses

● Ability to insert both statistical and exact cache models if needed.

– Device Models
● Standard devices used in the European space sector:

– MEC, LEON2, GRLIB (UARTs, timers, interrupt controllers etc)

– End user APIs
● Physical address independent devices

● Automatic checkpointing

● Automatic access to device properties from scripts

● C interface

© 2015 Terma A/S 7

T-EMU 2.0: Features and Models

● Library based design

– Easy to integrate in simulators

● Command Line Interface

– Assisting with emulator and model development
and integration

– On-board software development (e.g. unit tests)

© 2015 Terma A/S 8

T-EMU 2.0: Features and Models

● Processors

– ERC32

– LEON2

– LEON3

– LEON4

– NOTE: SMP and multi-core
processors can be emulated.

● Buses

– AMBA
● PNP supported for AMBA

devices

– Serial

– More bus-models to be
added

● Models

– On-Chip Devices
● MEC (ERC32)

● LEON2 on-chip devices

– GRLIB:
● AHBCTRL, AHBSTAT, AHBUART

● APBCTRL, APBUART, FTMCTRL

● GPTIMER, IRQMP

● Additional added as we go along.

© 2015 Terma A/S 9

T-EMU 2.0: Architecture and Internals

● Emulator Cores:

– Written in TableGen and LLVM assembler

– (Operational) decode-dispatch cores transformed to
threaded code automatically using custom LLVM
transformation passes.

– TableGen data combines: instruction decoders,
instruction semantics and assembler syntax in a
transformable format

– Multi-core support

● Emulator Shell

– Implemented using the T-EMU 2.0 object system APIs

– Integrates auto-generated assemblers and disassemblers
generated from TableGen data.

– High level interfaces
● Interrupt interface, memory interface, etc

© 2015 Terma A/S 10

T-EMU 2.0: TableGen CPU Descriptions

def add_rr : fmt3_1 <0b10, 0b1010101> {

 let AsmStr = “add {rs1:gpr}, {rs2:gpr}, {rd:gpr}”;

 let Semantics = [{

 %r1 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs1)

 %r2 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs2)

 %res = add i32 %r1, %r2

 call void @emu.setReg(%cpu_t* %cpu, i5 %rd, i32 %res)

 }];

};

© 2015 Terma A/S 11

T-EMU 2.0: Compilation Pipeline

Sparc.td

Core.ll
(LLVM asm)

Disassembler
.cpp

Assembler
.cpp

Sparc.cpp

ThreadedCore.bc
(LLVM bitcode)

Sparc.so

Decode-
dispatch to
threaded
transformEmuGen

© 2015 Terma A/S 13

T-EMU 2.0: Memory Emulation

● Each processor has a memory
space attached to it:

– Memory space decodes addresses

● N-level page table for identifying
memory mapped objects

– memory

– devices

● Unified interface for memory and
devices:

– Memory Access Interface

– Zero-overhead for MMU due to address
translation cache

● Memory attributes

– breakpoint, watchpoint read + write,
upset, faulty, user 1,2,3

Load VA

Lookup virtual
page address in

Address
Translation

Cache

call
external
read()

Cache
hit?

load
ATC_entry.host

+ VA & 0x00000fff

Value Loaded

NO

YES

© 2015 Terma A/S 15

T-EMU 2.0: Application Programming Interface

● Driven by the object system:

– Classes
● Description for how to create objects and what fields an object has

– Properties
● Fields in a class with optional read and write functions

– Used for register emulation

● Named, can access by string names (useful in scripts)

– Interfaces
● Structs of function pointers registered with a class

– Named, can query dynamically by name

– Normally queried at machine configuration time

– Interfaces are cached in fat pointers

● Used for memory accesses (a device implements the memory access
interface)

– Objects
● Instances of a class

– Objects are named, scripts can query for a given object, e.g.
cpu0

© 2015 Terma A/S 16

T-EMU 2.0: Device Models

typedef struct temu_MemTransaction {
 uint64_t Va; // Virtual addr
 uint64_t Pa; // Physical addr
 uint64_t Value; // Out or in value
 uint8_t Size; // Log size of access

 uint64_t Offset; // Pa – Dev Start
 void *Initiator; // CPU pointer
 void *Page; // Out (for ATC)
 uint64_t Cycles; // Out (cost of op)
} temu_MemTransaction;

typedef struct temu_MemAccessIface {
 void (*fetch)(void *Obj, temu_MemTransaction *Mt);
 void (*read)(void *Obj, temu_MemTransaction *Mt);
 void (*write)(void *Obj, temu_MemTransaction *Mt);
} temu_MemAccessIface;

MMIO Models Implement the MemAccessIface:

The functions take a potiner to a MemTransaction object (which is constructed by the core):

© 2015 Terma A/S 17

T-EMU 2.0: Application Programming Interface

● SMP2 Support

– Models can be integrated with SMP2 based simulators if needed.

– Similar to how ESOC Emu and TSIM are integrated in an SMP2
environment today.

– Similarities between T-EMU 2.0 object system and SMP2, integration is
straight forward.

● Other modelling frameworks to integrate with:

– System-C models

– VHDL / Verilog

● Emulator should integrate with any external API!

● Models can be prototyped in scripting languages (e.g.
Python)

© 2015 Terma A/S 18

T-EMU 2.0: SMP2 Options

T-EMU

CPU
Model

run()

read()/write()Milbus
device

Milbus
RT

T-EMU
CPU

Model
run()

read()/write()
Milbus
device

Milbus
RT

T-EMU

CPU
Model

run()

Milbus
RT sendMsg()

Traditional

Traditional ++

Ideal for Emulator

© 2015 Terma A/S 21

T-EMU 2.0: Correctness and Accuracy

● Instruction level correctness

– No-pipeline dependent effects at present

– E.g. nops after WRPSR not detected

● Timing accuracy

– Static instruction timing

– Static memory access penalty (waitstates)

– Caches can be added (but exact cache models imply that the ATC cannot be used to
its full extent)

● Exact cache models have performance implications

● T-EMU 2.0 allows the use of cache models if needed, but for high performance emulation the user would
simply omit connecting them to the CPU.

– Lack of cache model in simulated system = no performance impact of supporting the feature.

– Add cache model, pay the penalty

– T-EMU 2.0 scales between different timing accuracy levels:
● Low accuracy (no cache models, static waitstates only), highest performance

● Medium accuracy (statistical cache model assigning a cache miss penalty per page)

● High accuracy (exact cache models), lower performance (cache model invoked on every fetch, read and
write)

– Option:
● Run at high accuracy for profile used in a medium accuracy statistical model

© 2015 Terma A/S 22

Current Emulator Performance

TSIM

ESOC Emulator

T-EMU 2.0

0 10 20 30 40 50 60 70 80 90 100

MIPS (higher is better)

● 3.5 GHz x86-64
● ESOC Emu can be squeezed a bit more using custom TERMA optimisations, numbers here are

for the stock ESOC Emu configuration. Current ongoing optimisation work.
● TSIM numbers from Gaisler's website.
● Anything above 50 MIPS is high performance for an interpreted emulator

© 2015 Terma A/S 23

T-EMU 2.0: Future Directions

● Built-in support for SMP2 scheduler (some simulators may want to have
centralised scheduling so that an interrupt is raised by a model is
detected directly instead of being delayed to the next emulator
scheduling).

● Language for device modelling

– API compatibility between different emulators can be difficult

– DSL for writing device models could use compiler techniques (front and backends) to
generate models for multiple emulators.

● Binary translation (>300 MIPS)

● Additional architectures (ARM, PowerPC, MIPS etc)

● Support more ways for device modell ing:

– SMP2 publication

– System-C

● Bigger model l ibrary:

– Provide models for all common spacecraft processors and peripherals

– More GRLIB models

– Other models (e.g. COLE etc)

© 2015 Terma A/S 24

Questions?

PoCs:
● Technical: Dr. Mattias Holm <maho@terma.com>
● Sales: Roger M. Patrick <rmp@terma.com>

http://t-emu.terma.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24

