
UNCLASSIFIED

UNCLASSIFIED

SDYA: A Real Time and Distributed Software Verification

Infrastructure for Validating Flight Software (On-Board Software) at

System Integration Laboratory.

Uğur Melih Sürme

(1)
, Engin Öztuna

(2)
 , Orhan Uğurlu

(3)
 , Uğur Çakır

(4)
 , Samet Nargül

(5)
 ,

Kadriye Güçlü
(6)

(1,2,3,4,5)

TAI, Turkish Aerospace Industries, Inc.(TURKEY)

Fethiye Mahallesi, Havacılık Bulvarı No:17

06980 Kazan-ANKARA / TURKEY

Email:msurme@tai.com.tr, eoztuna@tai.com.tr,

ougurlu@tai.com.tr, ucakir@tai.com.tr,

 snargul@tai.com.tr,kguclu@tai.com.tr

ABSTRACT

System Integration Laboratory (SIL) Verification Software Infrastructure (“SDYA”) is

developed by Turkish Aerospace Industries (TAI) Software Team. It is currently being used

in the development of simulation software required for system and software verification

(testing and integration) at System Integration Laboratory for safety critical/reliable flight

software (On-Board Data Handling Software) and surrounding avionic equipment for

various platforms like manned/unmanned aerial vehicles and satellite systems. ECSS-E-

TM-40-07 (SMP-2): "Simulation Modelling Platform" standard compliance is taken as a

design consideration, and SDYA has been developed in accordance with CMMI Level 3

compliant TAI processes. Since the newly developed flight software to be tested will have

to comply with either “ECSS: ECSS-E-ST-40C: Space Engineering Software” or “RTCA

DO-178B: Software Considerations in Airborne Systems and Equipment Certification”,

SDYA is designed and developed satisfying both standards and related handbooks

Verification Tool/Tool Qualification objectives. SDYA also provides an automated test

infrastructure making it easier to conduct regressions when changes occur. SIL Verification

Software developed using SDYA infrastructure plays an important role in safety

critical/reliable software development projects by supporting the detection and resolution of

critical errors in the early stages of the projects, hence, reduces technical risks and costs

while shortening the development time.

Key Words: ECSS, SMP, Flight Software, Simulation, Real Time, Distributed, Automated
Test, SIL, CMMI, DO-178B, Software Verification Tool, Tool Qualification, MIL-STD-
1553, SpaceWire

mailto:msurme@tai.com.tr
mailto:eoztuna@tai.com.tr
mailto:ougurlu@tai.com.tr
mailto:ucakir@tai.com.tr
mailto:snargul@tai.com.tr
mailto:kguclu@tai.com.tr

UNCLASSIFIED

UNCLASSIFIED

INTRODUCTION

System Integration Laboratory Verification Software (SDYA) is a generic, real time,

distributed simulation infrastructure (engine) software developed by TAI for the

verification of Flight Software, Ground Station Command and Control Software within a

simulated laboratory environment. It replaces the real avionics equipment, and mimics their

functional behavior, thus communicates with Flight Software (On-Board Data Handling

Software), and Ground Station Command and Control Software through real avionics

interfaces (MIL-STD-1553, Serial, SpaceWire, Can Bus, etc.). It is used to apply integrated

test scenarios in system integration laboratory. Satellite System Integration Laboratory at

TAI Facilities is shown in Fig.1.

Fig. 1 Satellite System Integration Laboratory at TAI Facilities

Because of TAI’s platform integration responsibilities as being the main contractor in many

satellite projects, TAI is developing verification software for testing its own indigenously

developed Flight Software. Verification at SIL helps in detecting errors related with the

avionics system & architecture, interfaces, and Flight Software, thus reduces project risks

and cost, while improving the quality of avionic software during the integration and testing

activities [1].

In order to meet the challenges of these complex and highly interoperable systems, the SIL

has become a key component in the development process, and provides a test environment

that is a cross between a pure simulation and the final system.

SDYA has been developed in accordance with CMMI Maturity Level-3 compliant TAI

Processes. The Verification Tool requirements, which are explained in safety

critical/reliable software development standards such as ESA ECSS, and RTCA DO-178B

Tool Qualification, are fully satisfied. SDYA also contains a test infrastructure consisting

of both manual and automated tests developed for its own qualification, making it easy to

conduct even full regression testing when changes occur.

UNCLASSIFIED

UNCLASSIFIED

Following its own qualification tests, SDYA has also been successfully qualified for

“ANKA” Unmanned Aerial Vehicle (UAV) Program (An Advanced Medium Altitude

Long Endurance (MALE) class UAV System) in Q2, 2014 following the specific ANKA

models’ development and customization. “ANKA” performs day and night, all-weather

reconnaissance, target detection / identification and intelligence missions with its EO/IR

and SAR payloads, featuring autonomous flight capability including Automatic Take-off

and Landing.

SDYA can be tailored and used as a development or verification tool for flight software and

avionics system verification needs in Software Verification Facility (SVF) [2], during

Functional Chain Validation (FCV), or in Dynamic Satellite Simulator Development. It can

also be used as a support tool for verification of satellite on-board control procedures,

validation of satellite control centre, and satellite operator training. SMP-2 compliance is

taken as a design consideration for utilization in space domain.

SDYA OVERVIEW

SDYA provides a simulation based verification infrastructure for the validation of the

Flight Software and can be utilized in the following critical activities;

 Integration of avionics software/hardware

 Verification of software and hardware interfaces

 Simulation of avionic equipment and environment (simulation model development)

 Avionics hardware and software acceptance testing

 Avionic equipment fault detection

In order to satisfy these goals, selection of critical technologies in the SDYA development

process has been realized by the application of Decision Analysis and Resolution (DAR)

Process [3]. For instance, Operating System decision has been concluded by the selection of

Windows and Linux for SDYA implementations. One of the major deriving factors (DAR

criteria) was cross platform development and execution needs of SDYA programmers and

potential users. Cross platform development evolves from portable coding practices.

Portable source code will compile and execute on Linux and Windows even if underlying

hardware is different. Thus, it gives the programmers and/or users the ability to run the

same software on different operating systems and hardware configurations.

Selected technologies in the development of SDYA, and its component based architecture

are shown in Fig.2.

UNCLASSIFIED

UNCLASSIFIED

Fig. 2 SDYA: Selected Technologies and Component Based Architecture

SDYA infrastructure consists of the following

software modules;

SELSIM: It contains all models required within a

simulation and controls the scheduling of models.

It publishes/subscribes information of simulation

objects to the outside world i.e. Model User

Interface. It is able to communicate over the real

equipment data buses. SELSIM user interface is

shown in Fig.3.

 Fig. 3 SELSIM

Model User Interface (MUI): SDYA includes user

interface to allow simulator runtime behavior to be

monitored and for data injection. The MUI can

display the status of the simulated model (i.e. a

spacecraft avionic) including all messages. The

simulation environment displays error messages

for all erroneous conditions. Model User Interface

is shown in Fig.4.

 Fig. 4 Model User Interface

Data Recording and Analysis Tool: Allows storing of model info and related messages to

the file system on disk.

Automated Testing Tool: Provides simulation Application Programming Interface (API) to

the outside world. The API is a set of functions that the application developer uses to access

the features and capabilities of the system and underlying library. It supports Python, C#,

UNCLASSIFIED

UNCLASSIFIED

C++ programming languages. With Python API, it allows value injection and monitoring of

element that is used in simulation model.

Template-Based Output Generator: Generates code and build files with a given template.

These outputs can be used by SELSIM, Model User Interface and Automated Testing Tool.

Node Manager: Monitors other simulation tools (SELSIM, Model User Interface so on)

status, collects health info which is basically a CPU and memory usage of simulation

modules from other node managers, and sends open / close or master / slave commands to

nodes.

SDYA ARCHITECTURE

Development

The implementation of the architecture presented applies layered approach as compliance to

SMP-2 standard. Kernel is the main component of the architecture. It includes the Common

Services, Message Abstraction Layer, and Hardware Abstraction Layer (HAL). HAL is a

virtualized machine that represents the true underlying hardware. HAL is provided to add

avionics interfaces such as serial, MIL-STD-1553B, Ethernet, and etc. Model Manager

supports simulation and model control mechanism. Message Manager allows scheduling of

messages which is included in the simulation model. Data Manager supports raw to

engineering conversions. Model View Abstraction Layer is based on Model-View-

Controller design paradigm. SDYA Layered Architecture is shown Fig.5.

Fig. 5 SDYA Layered Architecture

SDYA serves as a real-time simulation software, which has main capabilities like

interfacing with equipment, dynamic control, and data injection. In order to meet

UNCLASSIFIED

UNCLASSIFIED

performance and scaling requirements for new models addition, a middleware that provides

a messaging framework distributing models information to different nodes is used. This

way, a simple, reliable, fast, and cost-efficient way of messaging between applications on

various operating systems is achieved.

Distributed systems can be composed of more than one independent platform, although

they may look as a single system to the user [4]. The messaging between distributed nodes

requires different kind of interactions for different platforms. Publish-Subscribe mechanism

has been popular among messaging patterns in recent years [5]. Publish-Subscribe meets

most of the platforms needs, however, it may not provide enough flexibility for fulfilling

different kind of interactions of advanced requirements of space platforms [6], such as

sending, sending-confirmation, request-response, call-confirmation-response, and,

progress-confirmation-update-response. For this reason, the middleware solution of SDYA

is identified as ZeroMQ based on its support to different kind of messaging patterns while

providing enough flexibility. An example deployment view of SDYA is shown in Fig.6.

Fig. 6 SDYA Deployment View

Testing and Integration

During SDYA development, TAI processes that are compatible with CMMI Level-3 are

fully applied. Independent Quality Audits are conducted for product and process

compliance to requirements, and processes. For the critical/reliable flight systems, the

qualification process [7] is vital. Consequently, for the qualification of SDYA, “Tool

Qualification”[8][9] processes of DO-178B, which is globally accepted avionic safety-

critical software development guidance, and the compatibility with ECSS-E-ST-40C[10],

which is the software development standard for space engineering software developed by

ESA are followed.

UNCLASSIFIED

UNCLASSIFIED

Moreover, “Run-time Infrastructure (Profile 2)” [11] compliance is supported by SDYA in

order to conform model compatibility with ESA SMP-2 (Simulation Model Portability)

standard, which is used in Satellite and Space projects. “ANKA” (unmanned aerial vehicle)

is selected as the first platform application that SDYA is used. The development and

adaptation of specific “ANKA” models are completed successfully.

During verification and validation process of SDYA, following activities are performed by

TAI Software Development Team and TAI Independent Software Verification Team.

 Requirement, Design, Source Code and Test Case Peer Reviews in accordance with

developed standards, and checklists

 Unit Tests

 Requirement-Based Tests

 Software Integration Tests

Requirement-Based Tests are developed and conducted as automated, semi-automated and

manual tests. For efficiency and repeatability, automatic test design, and execution is

encouraged, and thus maximized. In respect to this goal, test environments which are

compatible with automatic test run operations are developed. This testing infrastructure

helped us in detection and resolution of errors in initial development, integration phases

with the help of continuous (nightly) test runs. For the verification of Graphical User

Interfaces (GUI), test cases are developed by using a third party verification tool supporting

QT environment. Python script language is selected as the test development language. All

tests are performed on Windows and Linux operating systems for satisfying the cross

platform objective.

SPACE DOMAIN UTILIZATION OF SDYA

The simulation engine of the SDYA provides all the required test facilities, to support

verification at unit level and subsystem level. Simulator software is structured in models

and avionic buses. Thus, it contains sensor models, actuator models, and etc.. Models can

implement a complete simulation for a certain unit, or just the required signals to supply the

unit hardware in the loop. It is able to run in near real time, and provides visualization and

logging of all interested data. Its architecture is modular and object-oriented. With these

basic capabilities, and its scalable, modular, and distributed architecture TAI is planning to

utilize SDYA as:

 A Validation tool for the :

 Performance and Robustness Verification,

 Software Verification Facility (SVF),

 Avionic Functional Chain Validation (FCV),

 Satellite Assembly, Integration and Test (AIT) procedures.

UNCLASSIFIED

UNCLASSIFIED

 A support tool for the:

 Validation of Spacecraft operational procedures,

 Validation of Satellite Control Centre,

 Spacecraft operators training,

 Analyze and/or investigation of the anomalies detected in flight.

CONCLUSIONS

This paper presents SDYA architecture, its generic simulation infrastructure and

development process. The use of SDYA in the validation process of Satellite Projects is

planned and it will be the basis for a Simulator Software Product Line to be formed at TAI.

With its current capabilities, and flexible architecture, SDYA will support a large range of

Satellite integration and test activities:

 Software Verification Facility (SVF)

 Functional Chain Validation

 Avionic Test Bench Simulation

 Dynamic Satellite Simulation (DSS)

SDYA gives the test and integration teams a powerful and flexible tool that de-risks the

qualification process and improves its efficiency. Nevertheless, it is clear that the testing

and validation process of Spacecraft Simulators can be improved with the introduction of

new testing techniques and procedures, such as increased usage of automated tests. SDYA-

based systems could be developed to support integration and testing of complex systems in

space domain.

REFERENCES

[1] Nancy G. Leveson, A New Approach To System Safety Engineering, Aeronautics and

Astronautics Massachusetts Institute of Technology, June 2002.

[2] Jens Eickhoff ,Simulating Spacecraft Systems, Springer Series in Aerospace

Technology,2009

[3] SEI, “CMMI for Development”, Technical Report, CMU/SEI- 2010-TR-033, Software

Engineering Institute, Carnegie Mellon University, 2010.

[4] Kim, H-D. 2001. “An XML-based modeling language for the open interchange of

decision models,” Decision Support Systems 31, Issue: 4 (Oct), 429-441.

[5] Tanenbaum, van Steen, “Distributed Systems, Principles and Paradigms”, Prentice

Hall, 2002.

[6] IBM, “WebSphere MQ Publish/Subscribe”, http://bitly.com/Q8h6KB, 2009.

[7] “Mission Operations Message Abstraction Layer. Recommendation for Space Data

System Standards”, CCSDS 521.0-B-1, Blue Book. Issue 1, Washington, D.C.:

CCSDS, October 2010

UNCLASSIFIED

UNCLASSIFIED

[8] RTCA DO-178B/ED-12B Section 12.2

[9] ECSS,ECSS-Q-ST-80C,“Space Product Assurance/Software product assurance”, ESA-

ESTEC, 6 March 2009

[10] ECSS,ECSS-E-ST-40C,”Space Engineering /Software”, ESA-ESTEC, 6 March 2009

[11] Simulation modelling platform - Volume 1: Principles and requirements,

ECSS‐E‐TM‐40‐07 Volume 1A, 25 January 2011

