

## EGS-CC Phase B a Report

M. Götzelmann, Telespazio VEGA Deutschland GmbH SESP 2015, 25<sup>th</sup> March 2015



#### The EGS-CC Phase B Project

#### **Tasks and Schedule**

- SW Requirements Engineering
- Architecture and Interface Design
- Coordination with the POC project for technology selection
- Kick-off: Mar 2013
- SWRR: Dec 2013
- PDR: Apr 2014
- Final Delivery: May 2014

#### Team

- ESA Management
  - Mauro Pecchioli, ESOC
  - Juan María Carranza, ESTEC
- Industrial Consortium
  - Telespazio VEGA, Prime Contr.
  - CGI
  - GTD
  - Terma
  - Dutch Space
- EGS-CC SET (monitoring and review)



#### What is EGS-CC?

#### See previous presentations

## This presentation focusses on software design responding to the challenge of the EGS-CC wish list



EGS-CC Phase B - a Report - SESP 2015

#### What is EGS-CC?

- EGS-CC is not an MCS or EGSE System
- EGS-CC is not just a collection of infrastructure components that can be integrated into an M&C System
- EGS-CC is
  - A platform on which an M&C System can be built for a reference category of space systems, and which provides
    - Core monitoring and control functionality
    - Application support features
  - A set of components that allow adapting the core monitoring and control features to the operation environment
  - A test framework that can be used to validate EGS-CC itself and systems based on EGS-CC



#### Layered EGS-CC Architecture

#### • Kernel

Delivered as one package not to be modified but supporting extensions for specific needs

#### Reference Implementations

Components that may be replaced individually by alternative implementations without any impact on other components

• Reference Test Facility EGS-CC test environment









#### EGS-CC Kernel Functional Scope

- Core monitoring and control functionality that is independent of specific interfaces and protocols
  - Processing of monitoring information once decoded from transfer containers and presented by standard data types;
  - Processing of control actions to the extent possible independent of specific interfaces and protocols;
  - Management of monitoring and control data definitions;
  - Archiving of monitoring and control information;
  - Automation.
- Data access, distribution, and archiving services for source and processed M&C data
- General infrastructure, application support, and runtime management, provided to all EGS-CC components
- Support for external systems via a service integration platform



#### EGS-CC Kernel – Design Challenges

- Develop, enforce, and defend suitable abstractions for M&C functionality;
- Provide services that reflect client perception and needs;
- Ensure that the kernel can be easily customized through
  - Configuration;
  - Tailoring;
  - Scripting;
  - Software extensions when needed.



#### **EGS-CC Kernel Decomposition**



#### Hierarchical M&C Model (MCM)

CG

felespazio

A Finmeccanica/Thales Company



Agnostic of transport containers and encoding (e.g. packets)

EGS-CC Phase B - a Report - SESP 2015

#### **Activities and Automation**





#### Monitoring and Control Data Access Services

- Provide access to monitoring data and their definitions independent of status (live, historical) and location
- Support direct queries as well as publish / subscribe access patterns
- Support invocation of activities "immediately" and at a scheduled time (for ground invocation or on-board execution)
- Support archiving, retrieval, and distribution of opaque data not known by the Kernel as a service to the components in the reference implementation
- Hide deployment details (e.g. MCM distribution) on the client interface



#### (M&C) System Session



A Finmeccanica/Thales Company

EGS-CC Phase B - a Report - SESP 2015

#### **Configuration Tracking**

- Configuration Management is performed by external systems (outside of EGS-CC scope)
- Data imported into EGS-CC are structured according to Configuration Items (CI) defined and labelled by external Configuration Management
- EGS-CC keeps track of imported CIs including the supplied version tag and of online changes applied to the CI
- Tracked CIs include M&C Definitions, Configuration Data, and any files flagged as CI by EGS-CC users
- System Operation Baseline (SOB)
  - named set of Configuration Items intended for a specific use of the system
  - attached to a system session when it is created
  - may be constructed
    - In an M&C system session by including all CIs currently in use and modifications
    - Outside any M&C system session by identifying the CIs to include



#### EGS-CC Reference Implementations







#### EGS-CC Reference Implementations

- Functional Scope
  - Adaptation of the Kernel to the operation context
    - Interfaces to controlled systems
    - Processing of M&C data to the extent this cannot be generalised
    - Modelling of M&C services of the controlled system (e.g. PUS)
    - Specific external interfaces (e.g. MO services)
  - User Interfaces
  - Selected preparation tools and evaluation tools (post-processing)
- Design Challenges
  - Anticipate interfaces and features that are not fully known today
  - Develop generalised processing concepts into which such features can be integrated
  - Decompose RI into components that are easily replaceable
  - Design interfaces that are generic enough to support diverse components but do not compromise validation requirements



#### EGS-CC Reference Implementations







#### Transfer (Commanding) Routes



#### Verification of Activity Execution



#### **Commanding Chain**



#### **Monitoring Chain**



#### EGS-CC Reference Test Facility







EGS-CC Phase B - a Report - SESP 2015

#### EGS-CC Reference Test Facility

- Functional Scope
  - Validation of EGS-CC product and EGS-CC systems
  - Exercise interfaces and simulate operational environment
  - Integrate external systems into test configuration
  - Automated test execution
  - Test management
- Design Challenges
  - Full automation of system level regression testing
  - Test the EGS-CC product in many system configurations
  - Support integration of new test models to enable testing of mission functionality in EGS-CC systems
- Complemented by a Component Test Framework





#### **Component Based Architecture**

#### • Subsystem

- "White Box" with decomposition visible from "outside"
- Used for grouping of components
- May have global interface definitions
- Level 0 Component
  - Component exposing well defined interfaces and encapsulating implementation including structure
  - Specification and interface design made available to developers using EGS-CC to implement MCS / EGSE systems
  - Self-standing with respect to documentation, configuration, and testing
- Level N Component
  - Component exposing well defined interfaces and encapsulating implementation including structure
  - NOT required to be known to developers using EGS-CC to implement MCS / EGSE systems



#### Documentation



CG

[elespazio

A Finmeccanica/Thales Company



#### Model Driven and Service Oriented

- Complete design developed as implementation technology platform independent model in UML
- Documentation largely generated from the model
- All interaction between components and with external systems designed as services modelled according SoaML principles
- Requirements included in the UML model to support verification of traceability
- Technology analysis performed by concurrent project
  - Regular coordination meetings during Phase B
  - Initial high level technology baseline established
  - Detailed consolidation between technology selection and architectural design still to be done



#### EGS-CC Phase B Engineering Approach



All milestones of the demanding schedule have been met with a maximum delay of a few days.



#### **Conclusions and Outlook**

- The "EGS-CC Wish List" has been a challenge for the Requirements Engineering and Architecture Design in Phase B
- We believe that the Technical Specification and Architecture Design lives up to the wish list and is a good foundation for development of EGS-CC. It is
  - Model driven
  - Service Oriented
  - Component Based
  - Technology neutral (as far as reasonable)
- The technology selection has been a concurrent activity and an initial technology baseline for the design has been established



#### Phase C/D Kicked off 28.11.2014





### Thank you for your attention

# Questions?

