
EGS-CC Phase B - a Report 
 

Martin Götzelmann 
 

Telespazio VEGA Deutschland GmbH, Darmstadt, 64293, Germany, 
martin,goetzelmann@telespzio-vega.de 

 
 
ABSTRACT 
 
The European Ground Systems – Common Core (EGS-CC) is a European initiative to develop a common infrastructure 
to support space systems monitoring and control in pre- and post-launch phases for all mission types. This is expected 
to bring a number of benefits, such as the seamless transition from spacecraft Assembly, Integration and Testing (AIT) 
to mission operations, reduce cost and risk, support the modernisation of legacy systems and promote the exchange of 
ancillary implementations across organizations. The initiative is being performed as a collaboration between ESA, 
European National Agencies and European Industry. A presentation of the initiative and its current status can be found 
in the paper “EGSC-CC: the Initiative is Becoming a Reality” [1]. This paper provides a report on the Software 
Requirements Engineering and Architectural Design, Phase B of the EGS-CC project, which has been performed by a 
geographically distributed industrial team in close collaboration with the EGS-CC System Engineering Team (SET) . 
 
INTRODUCTION 
 
Phase B of the EGS-CC project covered Software Requirements Engineering and the Architecture and Interface Design 
and was performed by Telespazio VEGA, CGI, GTD, Terma, and Dutch Space under ESA Contract. It started in March 
2013 and ended in June 2014 with closeout of the Preliminary Design Review. 
 
Specification and design of EGS-CC faced the following main challenges:  
• In order to be widely accepted and used as monitoring and control infrastructure by space operators and space 

industry, EGS-CC must support a large variety of systems and operations contexts. This implies that it must on the 
one hand provide a rich set of generic commonly usable features and on the other hand exhibit a high degree of 
extensibility and adaptability to specific operational environments. The EGS-CC SET has therefore defined 
ambitious design goals including e.g. 

o Open, component based, service oriented architecture; 
o Native support to automation at all levels; 
o High performance and scalability; 
o Extensibility via binary interfaces; 
o Long term maintainability. 

• The selection of the technology to be used for EGS-CC was performed by a separate activity concurrently with the 
design; the architectural design itself should be technology neutral as far as possible while taking maximum 
advantage of the features provided by the recommended technology; 

• The EGS-CC programme has a large number of stake holders and the success of the project heavily depends on 
continuous involvement of all parties to ensure that their intentions and needs are met. 

 
In the following sections this paper will describe the approaches adopted in Phase B to meet these challenges: 
• Modular layered architecture based on rigorously specified services provided by replaceable and extensible 

components; 
• Model Based Development: the complete specification and design is implemented in a UML model adopting a 

formal approach that supports verification of the design and lays the foundation for model based development in 
the following phase; 

• Consideration of testing and in particular test automation as an essential design aspect from the outset; 
• Iterative design process with frequent workshops with and reviews of intermediate results by the stake holders and 

continuous coordination with the technology selection project. 
 
LAYERED EGS-CC ARCHITECTURE 
 
Overview 
 
The EGS-CC product is conceived as an infrastructure package that can be used for the development of monitoring and 
control systems for spacecraft including Mission Control Systems (MCS) and Electrical Ground Support Equipment 
(EGSE) for spacecraft AIT. This can be better explained by stating what EGS-CC is and what it is not. 



• EGS-CC is not a monitoring and control system. 
• EGS-CC is not just a collection of infrastructure components that can be integrated into a monitoring and control 

system. 
• EGS-CC is 

o a platform on which a monitoring and control systems can be built and which provides core monitoring 
and control features as well as application support functionality; 

o a set of components that allow adapting the core monitoring and control features to the operation 
environment; 

o a test framework that can be used to validate EGS-CC itself and systems based on EGS-CC. 
 
These considerations are reflected by the top level architectural 
layers of EGS-CC shown in Fig. 1. 
 
The EGS-CC Kernel provides core monitoring and control 
functionality in a manner that is independent of the interfaces 
to monitored and controlled systems and the packaging of the 
data received and transmitted. In addition, the Kernel includes 
data handling and general application support features. 
According to the long term maintenance and evolution policy 
defined by the SET, the Kernel will always be delivered as a 
single package which cannot be modified by system 
developers using it but shall enable extensions for specific 
needs. 
 
The EGS-CC Reference Implementations (RI) provide 
functionality required to adapt the Kernel to a specific 
environment in which it is operated covering interfaces to 
monitored and controlled systems, pre-processing of raw 
monitor data, and encoding and formatting of control 

information, as well as interfaces to external systems based on the CCSDS Recommendation for Mission Operation 
Services [5]. In addition, this layer includes reference implementations for features that some prospective users of EGS-
CC prefer to provide by other implementations either because those implementations cover a wider scope of 
applications or are more sophisticated. Examples of such features include user interfaces, data evaluation and post-
processing, and preparation tools. The Reference Implementations are therefore designed as a set of components that 
may be replaced individually by alternative implementations without any impact on other components. 
 
The EGS-CC Reference Test Facility (RTF) is a test environment delivered as part of the EGS-CC product. It is 
foreseen to be used for validation of the EGS-CC product but also for systems based on EGS-CC and includes 
simulators for EGS-CC interfaces as well as test management and test automation features. As for the Reference 
Implementations components the RTF must support easy replacement of components and integration of additional 
simulators. 
 
Each of these architectural layers present specific design challenges which are described in the following sections 
together with the design approaches adopted in response. 
 
EGS-CC Kernel 
 
Functional Scope and Design Challenges 
 
The functional scope of the Kernel has been the main driver for the decomposition into high level components as shown 
in Fig. 2. These components can be grouped into three layers: 
• Core monitoring and control functionality that is independent of specific interfaces and protocols including  

o Processing of monitoring information once decoded from transfer containers and presented by standard 
data types; 

o Processing of control actions (referred to as activities) to the extent possible independent of specific 
interfaces and protocols; 

o Management of monitoring and control data definitions; 
o Archiving of monitoring and control information; and 
o Automation. 

• Data access, distribution, and archiving services for processed data (M&C Access API) and source data (Source 
Data Access). This layer also provides access to EGS-CC Kernel services for external systems via the service 
integration platform. 

• General infrastructure, application support, and runtime management, provided to all EGS-CC components.  

Core M&C Functionality
Data Handling

Application Support

Presentation

Preparation

M&C Adaptation 

Ext. interfaces Evaluation

External System
s

Monitored and Controlled Systems

External System
s

Kernel Reference Implementations
Reference Test Facility

Key:

 
Fig. 1. Main EGS-CC Architectural Layers 



The specific characteristics of 
the Kernel impose some specific 
design challenges: 
 
Finding the right abstractions: 
Because the Kernel components 
shall be independent of any 
specific interfaces and shall be 
capable of supporting a variety 
of different operation contexts it 
is essential to define concepts at 
the right level of abstraction and 
to defend this level of abstraction 
against the natural tendency to 
mix them with interface specific 
concepts and data structures. 
Many of the EGS-CC concepts 
had already been conceived in 
Phase A of the project and have 
been elaborated and refined 

during the design process while others have been developed within phase B. Examples of such concepts are described 
later in this section. 
 
Defining services from a client perspective. One of the design goals of EGS-CC is to provide a service oriented 
architecture and this approach has been systematically applied. It has been observed however, that initial versions of the 
service definitions were very much driven by what a component has to offer rather than systematically analysing usage 
scenarios and optimizing the design from a client’s perspective. Through iterative review and revision the service 
design could be very much improved in this respect. 
 
Enabling customization of the kernel. As mentioned earlier the long term maintenance and evolution policy for EGS-CC 
defines that the Kernel is always delivered as one package and cannot be modified by developers using EGS-CC to 
build a system. This essentially means that interfaces exposed by the Kernel shall remain stable but there is no 
guarantee that interfaces not exposed but defined only between Kernel components, let alone component internal 
interfaces, remain unchanged from one version to the next. Nevertheless there will be the need to adapt the kernel to the 
operational context and to adjust or extend its functionality. Customisation of the Kernel for a given system is supported 
by the following capabilities. 
• Configuration: all components provide extensive configuration options. Editing and offline management of 

configuration data is supported by a (replaceable) Configuration (Data) Management component of the Reference 
Implementations and online distribution and management of configuration data is supported by a dedicated System 
Configuration Kernel component. 

• Tailoring refers to the definition of monitoring and control data items and their organization to adapt the system to 
a specific application/mission. Tailoring in this sense includes the preparation of automation procedures used to 
automate testing or operation of a spacecraft. 

• Scripting can be used to extend the functionality of the software. Scripts can be executed within the automation 
component (see later in this section) and at system level to automate configuration and launching of applications. 

• As a final line of defence, the EGS-CC design supports numerous extension points at which developers can attach 
software extensions implementing mission specific algorithms or functions to complement the functionality 
available from the EGS-CC Kernel. 

 
All of these customization features are available also for components of the Reference Implementations. Those 
components, however, can additionally be completely replaced individually by custom implementations. 
 
Monitoring and Control Model 
 
A central concept of EGS-CC is the Monitoring and Control Model (MCM), which is extensively covered by [1] and 
therefore only discussed in outline here with focus on design relevant aspects. 
 
The MCM is a model of the space system which is monitored and controlled for test (in an EGSE system) or for 
operational purposes (in an MCS). The MCM enables the capture of all relevant information related to the Space 
System in a structured way which reflects the functional decomposition of the space system itself. The knowledge held 
by the MCM is of two sorts: static and dynamic. The static knowledge encompasses all monitoring and control data 
produced during the development and the maintenance of the Space System and is used to tailor an EGS-CC system for 
a given mission. This static knowledge is based on the principles of the M&C view of the Space System Model (SSM) 

Monitoring 
and Control 

Model

M&C 
Definition 

Management

Archive
(processed & 
source data)

M&C Access 
API

Automation

Kernel 
Services

Source Data 
Access

Runtime 
Management

System
Configuration

File 
Management

Security Shared 
LibrariesTiming

Messaging

“core a&C 
functions”

“access to 
a&C 
functions”

“application 
support”

Configuration 
Tracking

Infrastructure (component framework, service integration, data distribution)

 
Fig. 2. Decomposition of the EGS-CC Kernel 



defined in [2]. It is referred to as the “MCM Definitions”. The dynamic knowledge encompasses all monitoring and 
control data produced by the Space System during testing and operations (e.g. the content of all sent TCs and all 
received TM). This is referred to as the “MCM State”. 
 
The MCM concept ensures a clean separation between the M&C abstract view and generic processing and the specific 
processing related to the data units exchanged with the controlled systems. This approach allows the application of the 
same M&C kernel to different types of controlled systems, such as spacecraft, EGSE systems, ground station 
equipment, etc. This means that the M&C system can monitor and control not only the target system (e.g. a spacecraft), 
but also all other contributing ground systems (e.g. EGSE supporting equipment, and the EGS-CC itself), independent 
of the format in which data are transferred. 

The MCM contains a hierarchy of 
Monitoring and Control Elements 
(MCE). Monitoring and Control 
Elements typically correspond to 
the elements of the space system 
decomposed from the monitoring 
and control perspective, providing 
the operator with the desired level 
of abstraction. Each MCE may 
include parameters describing the 
state of the represented space 
element, events, and activities. The 
concept is illustrated by Fig. 3; the 
concept of activities is discussed to 
more detail in the following 
section. 
 

Activities and Automation 
 
An activity is an abstraction of a control function invoked through the MCM that can be implemented as a command 
either to the space segment or to the ground segment, an automation procedure, a script, or any software function 
provided by EGS-CC. Fig. 4 illustrates the concept from an MCM perspective. 
 
An activity defined by tailoring may be 
invoked by a commanding source, which 
may be a human user (via the user interface), 
an automation procedure, or any other SW 
component. The figure shows the Activity 
Stack, a special Reference Implementation 
component, capable of implementing 
sequences of potentially interlocked act ivy 
invocations prepared e.g. by a mission 
planning system. When an activity is invoked 
by a commanding source, the MCM creates 
an activity occurrence which is subsequently 
used to monitor the execution of the activity. 
From the perspective of the MCM, an activity 
occurrence is executed by a component that 
implements the Activity Processor interface. The component providing this interface is also responsible for defining 
what verification stages will be supported to monitor execution of the activity and to provide the associated reports for 
verification stage updates. Any component  can implement this interface and register it with the MCM; the interface to 
be selected for a given activity is defined by an associated Service Access Point, which may be overwritten by the 
commanding source, in order to have the activity occurrence executed by an alternative activity processor, e.g. for 
testing purposes. 
 
Activity invocations by command sources can be for immediate execution or may specify an invocation time. In the 
latter case the activity occurrence is loaded to a ground schedule which will release it for further processing at the 
specified time. Finally activities can be associated with events such that those activities will be executed whenever the 
specified event occurs. 
 

Space 
System

Space 
Segment

Ground 
Segment

Spacecraft

OBDH

AOCS

Gyro 1

Gyro 2
Ground Support  

Equipment

M&C 
System

Key
M&C Element

Event
Activity

Reporting Data

 
Fig. 3. Monitoring and Control Model Concept 

AutomationMCM

Command Handling

Activity  Processor

M &C Element

Event

Activity Occurrence

Ground ScheduleUser Interface

Activity Stack

Procedure

Procedure

Script

SW Function

Commanding Sources

 
Fig. 4. Activities and Automation 



Access to Monitoring and Control Data 
 
Essential services provided by the Kernel deal with storage, retrieval, and distribution of monitoring data. A major 
constraint for the Kernel design is that it must have no dependency on the specific operations context including also the 
protocols and data structures by which data are exchanged with controlled systems. Therefore a clear distinction is 
made between M&C data processed by the MCM and therefore known to the Kernel and “source data” holding data as 
received from controlled systems. 
 
Source data are considered opaque data annotated with information attached by components of the Reference 
Implementations that receive and pre-process the data. Source data are stored to a source data archive and the 
annotations are used as keys for data retrieval. The Source Data Access (SDA) component provides services by which 
data producing components can forward data for storage and online distribution and data consuming clients can 
subscribe to data based on the annotations. 
 
The term processed data refers to the output of the Monitoring and Control Model. These objects are stored to Processes 
data Archive and can be retrieved using object properties and the archive knows their structure. The M&C Access API 
(MCA) component provides services by which clients can subscribe to processed data using versatile filters and update 
specifications including cyclic, changes only, and various combinations of these. 
 
The services provided by the SDA and the MCA components provide “one stop shop” features allowing clients access 
to data independent of the location at which data are stored and the independent of the time at which data are processed. 
Subscriptions to data may define a time period which starts in past and extends into the future. In such a case data will 
be initially retrieved from the Archive and delivery of the data will eventually seamlessly switch to live data. Both 
components support a timely delivery mode in which data may be dropped in favour of delivering always the most 
recent data and a complete delivery mode that ensures data delivered are complete. In the latter case, delivery may 
switch between live data and archived data if the client cannot take the data at the speed live data are produced. The 
M&C Access API also provides control services e.g. to invoke activities. This feature hides the complexity of a 
potentially distributed MCM. 
 
Session Management 
 
A monitoring and control system session is a logical grouping of EGS-CC components dedicated to the processing of 
the data of a controlled system and generating a separate set of outputs distributed to clients and stored to the processed 
data archive. Several system sessions can be operating concurrently, e.g. dealing with test of different subsystems. 
System sessions are associated with a set of M&C definitions and configuration data referred to as System Operation 
Baselines (SOB). The components operating within a system session have access to dedicated repositories for archiving 
(“data space”), files (“file space”) software configuration (“configuration space”) and log messages (“log book”). Data 
in the configuration space are part of the SOB as are a subset of the files in the session “file space”. Finally each system 
session runs within a dedicated time frame, which can be ground system time (e.g. UTC) or simulated time based on an 
offset and optionally a scale factor applied to ground system time. These concepts are illustrated in Fig. 5. 

 
As shown in the figure, a “user session” 
is created for each user logging into an 
EGS-CC based system. After logging in, 
users must select the service session 
they wish to connect to. 
 
System sessions are managed by the 
Run-time Management (RUM) 
component based on session profiles that 
identify the application instances 
required for a given session as well as 
the System Operation Baseline. To start 
a session, RUM will create the 
repositories, populate them with the 
required data, and launch all application 
instances defined in the profile. RUM 
itself as well as the components 
handling the repositories (Archive, File 

Management, System Configuration, and Messaging) are not part of any system session as the data they manage must 
be preserved also after a system terminates and must be accessible also outside a system session. 
 

Archive

File Space

Data Space

Log Book

File 
Management

Configuration 
Space

System
Configuration

Messaging

Timing (wall-clock / simulated)

Component 1

Component 2

Component 3

Component N

System 
Operation 
Baseline

System Session

M&C definitions

Configuration 
Space

File Space

M&C definitions

User Session

User Interface

 
Fig. 5. EGS-CC System Session Concept 



EGS-CC Reference Implementations 
 
Functional Scope and Design Challenges 
 
The functional scope of the Reference Implementations covers 
• Adaptation of the Kernel to the monitoring and control context, i.e.: 

o Provision of interfaces to monitored and controlled systems; 
o Pre-processing of monitored data to the extent that this depends on specific protocols and data formats; 
o Processing and verification of commands sent to controlled systems; 
o Modelling of M&C services such as the ECSS Packet Utilisation Services (PUS) [4]; 

• User Interfaces; 
• Default preparation tools for automation procedures, user defined display, and configuration data ; 
• Basic post-processing tools; 
• Special applications and interfaces not required for all deployments. 
 
As pointed out earlier, an essential difference between the Kernel and the Reference Implementations is that RI 
components may be replaced completely by a bespoke implementation without affecting any other component. This 
requirement presents a number of specific design challenges: 
 
Finding the right granularity: In order to make replacement of components by mission specific implementation 
effective, the decomposition of the Reference Implementation into replaceable components is essential. The 
decomposition described later in this section is the result of careful analysis of the processing steps to identify coherent 
functionality that might have to be replaced for a given mission. 
 
Supporting generalised processing concepts and flexible interfaces: In order to enable use of EGS-CC in a large variety 
of different operation contexts a number of generalised processing concepts have been defined including for instance 
support for transmission routes that may require different means for command transmission and execution verification 
(see [1]). Obviously the design must support those concepts which implies in particular use of flexible design patterns 
for the interfaces between the components to accommodate passing information that my vary according to the route on 
which commands are transmitted and monitoring data are received. 
 
Designing for the unknown: An essential feature of the Reference Implementations design is that it must aim at easy 
integration of interfaces and features that are not fully defined at the time of development. The characteristics and the 
scope of such interfaces and features have been derived from EGSE and MCS currently in use but because of the large 
variety of different approaches, protocols, and data structures suitable abstractions need to be defined. The design 
responds to this challenge with the concept of generic component specifications, which define an interface handler and 
describe how it must be integrated with other components of the Reference Implementations but make no assumptions 
on how the interface handler will connect to and interact with the equipment to which it interfaces. To connect external 
equipment to an EGS-CC based system, developers of that system will have to design and implement an interface 
handler that also implements the appropriate EGS-CC generic component specification. EGS-CC Reference 
Implementations may or may not provide an implementation of a generic component. This design approach has been 
applied for the following type of interfaces: 
• Telemetry and Telecommand Data Interfaces that inject CCSDS telemetry frames into EGS-CC and accept 

command data at the level of CCSDS Frames or CCSDS Packets. For this interface EGS-CC provides a specialised 
implementation that supports the CCSDS Space Link Extension (SLE) standard [3]. 

• Packet Data Interfaces, that can support any packet or message based interface receiving monitoring packets and 
sending command packets. The packets may be CCSDS Space Packets but could also be messages of any kind that 
can be constructed and decoded according to a tailored packet structure definition. A typical specialisation for such 
a specification is the interface to a SCOE (Special Check-out Equipment) in the context of spacecraft AIT. 

• Cryptographic Services used to interface mission specific implementations to secure telemetry and telecommand 
data. Cryptographic services may be provided “in loop” i.e. only to secure command packets or frames or decrypt 
telemetry frames or packets. Alternatively an implementation may cut the processing loop in that it includes the 
complete processing of commands after the interception point and/or of telemetry before the interception point. 

 
Monitoring Chain 
 
The top-level decomposition of the monitoring chain based on the principles described in the previous section is shown 
in Fig. 6 in a slightly simplified manner. The figure also shows how the components of the monitoring chain interact 
with the Kernel components. 
 
Interfaces for reception of monitoring data are defined as generic component specifications for which an 
interface/protocol specific implementation must be provided by developers of an EGS-CC based system. The only 



interface implementation already 
included in the Reference 
Implementations supports the 
CCSDS SLE services. Processing 
in the monitoring chain is based 
on the concept that all data to be 
processed further are passed to the 
Source Data Access (SDA) 
component of the Kernel for 
distribution and optionally for 
storage to the Source Data 
Archive. Processing components 
will subscribe to SDA for the data 
of interest. Identification and 
decoding of packets is supported 
by a set of generic services 
implemented by a Packet 
Encoding and Decoding (PED) 
component based on tailored 
packet structure definitions. These 
packet definitions are part of the M&C definitions stored and maintained by the Kernel. 
 
For processing of CCSDS Frames the Reference Implementations include a component for extraction, identification, 
and pre-processing of packets. As a final step the Parameter Extraction (PEX) component extracts parameters from 
packets and injects them into the MCM for processing and storage into the Processed Data Archive. Beside basic packet 
handling and parameter extraction, the Reference implementations include a set of M&C Service Models (MSM) 
providing more advanced processing features such as loading commands on a schedule in the controlled system. While 
the services and interfaces provided by the MSM component are generic the only services for which models are 
specified and implemented are those defined by the ECSS Packet Utilisation Standard [4]. 
 
Commanding Chain 
 
Fig. 7 shows the top-level decomposition of the commanding chain and the interaction of the components implementing 
the chain with Kernel components. As explained earlier, sending of commands to controlled systems is one of several 
options by which an activity can be implemented and therefore, components that interface to the MCM for processing 
of commands implement the Activity Processer interface; these interfaces are marked by “(AP)” in the figure. The 
Activity Processor interface allows passing the activity occurrence ID and a set of arguments that are used to encode the 
command packet using the Packet Encoding service provided by the same component that also provides the packet 
decoding service. In addition to the activity occurrence, the Activity processor interface allows passing the command 

route that determines the 
components to be used for 
subsequent processing 
steps as well as a set of 
“processing directives” to 
control individual 
processing steps, where 
applicable. 
 
Components implementing 
further processing steps all 
implement a generic 
Command Processor 
interface, marked by 
“(CP)” in the figure. This 
interface allows passing an 
opaque command structure 
as well as the activity 
occurrence ID, the 
command route, and the 
processing directives. 
Components implementing 
the interface will take into 
account those processing 

TM/TC Data 
Interface

tackets

Crames

tarameters/events

CCSDS tacket 
Extraction

Parameter 
Extraction

M&C Service 
Models (PUS)P

acket Identification and 
D

ecoding

M
&

C
 D

efinitions

Packet Data 
Interface

Source 
Data 

Archive

MCM Processed 
Data Archive

CLCW

Kernel Component RI Component Deneric RI Component

Source Data Access

//SDS or other

 
Fig. 6. Top Level Design of the Monitoring Chain (simplified) 

TM/TC Data Interface

tackets

Crames

Activity Invocation

CCSDS Frame 
Deneration & 

FOt

Command Packet Handling

M&C Service Models (PUS)P
acket E

ncoding

M
&

C
 D

efinitions

Packet Data 
Interface

Source 
Data 

Archive

Source Data Access

MCM

CLCW

Kernel Component RI Component Deneric RI Component

tUS 1 Reports

/ommand 
Iistory

At At

Ct

CtCt

Ct Ct

Implementation dependent (for SLE: /LTU or //SDS tacket)

Activity trocessor I/C

/ommand trocessor I/C
Ct

At

Processed 
Data Archive

//SDS or other

 
Fig. 7. Top Level Design of the Commanding Chain (simplified) 



directives they understand and ignore others and will forward the command as defined by the command route. The final 
processing step consists of sending the command to the controlled system using the appropriate protocol which must be 
performed by an implementation of either the Generic TM/TC Data Interface or the Generic Packet Data Interface 
specification. As for the monitoring chain, the Reference Implementations include an implementation of the Generic 
TM/TC Data Interface for the CCSDS SLE services. 
 
Verification of command transmission and execution by the controlled system may also depend on the transmission 
route. For instance, uplink of a telecommand via a ground station will be monitored by a set of uplink verification 
reports whereas such reports might not be supported by a SCOE. Therefore each Command Processor interface is 
associated with a Command Verification Reporter interface, by which the component announces what verification 
stages it supports and subsequently submits verification reports. In the same way, the Activity Processor Interface is 
associated with an Activity Reporter interface which allows announcing verification stages and passing verification 
reports. For controlled systems supporting the PUS Standard [4], the verification stage reports related to on-board 
acceptance and execution are provided by the PUS Service 1 model dealing with command verification packets. This 
model provides a generic command verification service such that the PUS-1 implementation can be replaced by any 
other verification service if needed. 
 
A number of M&C Service Models maintain a model of the on-board service which is progressed according to 
commands sent. In some cases reports can be requested to be downlinked and can then be compared with the model 
state to support synchronisation. An example of such a model is the onboard schedule model (PUS 11) that shows the 
commands currently loaded on the schedule and their status. In EGS-CC those models are maintained in the MCM as a 
hierarchy of M&C elements, parameters, events, and activities such that they can be viewed and processed as any other 
monitoring information. Service requests would typically be modelled as activities associated with the model. For the 
invocation of such service requests the M&C Service Models also implement the Activity Processor interface. When an 
activity is invoked the models will generate the appropriate commands using the Packet Encoding service and will 
update the service model in the MCM accordingly. 
 
EGS-CC Reference Test Facility 
 
The third element of the EGS-CC product, after the Kernel and Reference Implementations, is the Reference Test 
Facility (RTF). The RTF is not part of an EGS-CC system, but is a testing framework. It supports system-level testing 

of the Kernel and of the Reference 
Implementations for EGS-CC 
product validation; it supports 
system testing of complete EGS-
CC systems; and it supports 
testing of externally supplied 
components in integration with 
EGS-CC. The last of these cases 
allows components developed by 
external entities to be integrated 
and tested in parallel with ongoing 
EGS-CC development and 
maintenance. 
 

The RTF therefore simulates the operating environment of an EGS-CC system. It can also run tests in which part of the 
actual operating environment is integrated. In this way the elements of a ground segment can be tested together in 
different combinations, with the missing elements simulated by the RTF. The constituent elements of the RTF and their 
interaction with EGS-CC are depicted by Fig. 8. 
 
COMPONENT BASED, SERVICE ORIENTED, AND MODEL DRIVEN DESIGN 
 
Following the directives of the EGS-CC System Engineering Team, the design of EGS-CC strictly applies the following 
principles 
 
Component based design: EGS-CC is conceived as a set of components supported by a component framework that can 
be used to build monitoring and control systems. Components are closed in the sense that they expose well defined 
interfaces and services but hide the internal structure and implementation. As such components can be easily replaced 
by implementations that support the interfaces and behaviour defined by the component specification. The system 
decomposition into components is recursive: the EGS-CC design refers to components resulting from the first level 
decomposition as Level 0 Components or L0 Components for short. An L0 component is further decomposed into L1 
components, and so on until the level of implementation classes has been reached. 
 

EDS-CC System
under test

Controlled 
System 

Simulation

External 
Interface
Drivers

Test execution, control, recording

EGS-// Automation/onfiguration Test ScriptingTest Scripting

 
Fig. 8. Reference Test Facility 

 



L0 Components of the Reference Implementations must be easily replaceable without impact on any other component. 
This requirement asks for more than just replacing the software by a different implementation. In EGS-CC a component 
is a self-standing replaceable unit also in the sense of documentation, configuration, tailoring, and testing. Therefore the 
complete documentation including Software Requirements, Interface Design, Configuration, Tailoring, and Deployment 
is provided as a specific Software Specification and Design Document (SSDD) for each L0 Component. The SSDD 
includes all information that is required by developers of an EGS-CC based system. The internal design of L0 
Components, i.e. the 
decomposition into L1 
components, delegation of L0 
Component interfaces and the 
interfaces between L1 
components is not included in 
the SSDD but provided in the 
UML model. For review 
purposes, a set of hyperlinked 
HTML files documenting the 
UML model can be generated 
and distributed. 
 
For better structuring, L0 
Components are grouped into 
subsystems and subsystem level 
information is compiled in a 
subsystem SSDD. The 
decomposition logic and the 
associated documentation are 
illustrated in Fig. 9. 
 
Service oriented architecture: All interfaces between components and interfaces to external systems are strictly 
modelled as services using design patterns based on the SoaML standard [6]. EGS-CC components specify services, the 
interfaces used for the services and service roles, including the service provider and the service consumer. Component 
specifications prescribe that a component shall provide a service by inheriting the service provider role specification. 
Likewise inheritance of a service consumer role specification defines that the component will use a given service. With 
this approach, components are fully decoupled and only depend of the service specifications. Linking of component 
interfaces is expected to be implemented by the component framework in a manner that is transparent for application 
code. It is recognised that this may require bespoke extensions to third party products based on EGS-CC specific 
conventions. 
 
Model driven development: The complete design has been developed using the Unified Modelling Language in such a 
way that will allow further refinement of the model up to generation of source code from the model. In addition to all 
design aspects both user requirements and software requirements have been entered into the model such that tracing can 
be performed and verified within the model as well. The documentation of the software requirements and of the design 
has been generated from the design model to a very large extent. 
 
Technology Independence: The architectural design as documented in the UML model and the SSDDs does not assume 
use of any specific technologies. Interaction between components that depends on infrastructure technologies such as 
the component framework has been modelled using design patterns based on SOAML. On the other hand technologies 
that are suitable for use by EGS-CC have been subject to analysis in a separate project which has built a proof of 
concept prototype primarily to evaluate the performance of candidate technologies. Based on the results of that project 
an initial technology baseline has been defined by the Phase B project, which will have to be further elaborated in the 
following phases. The feasibility of implementing the design patterns used for EGS-CC with the technologies included 
into the baseline has been verified by prototyping. 
 
As a final precaution, the EGS-CC Kernel architecture includes a special component “Infrastructure” foreseen to cover 
any add-on development that might be required to extend the capabilities of selected third party products to meet EGS-
CC requirements. 
 

class EGS-CC Model Structure

System

Subsystem

Lev el 0 Component

Lev el N Component
0..*

0..*

1..*

0..*
1..*

Specification & Design Document including

• Overview  (edited)
• Requirements (generated)
• Interfaces (generated)
• Decomposition (edited for subsystems)
• Configuration, Tailoring & Deployment (generated)

Hyperlinked HTaL Ciles describing the design

• Decomposition (structure)
• Internal Interfaces
• Implementation behaviour

 
Fig. 9. Decomposition Logic and Associated Documentation 



PHASE B ENGINEERING APPROACH 
 
Beside the technical challenges described in the previous sections, the EGS-CC Phase B project had to cope with 
organisational challenges including: 
• The requirement to involve a large number of stakeholders into the specification and design process in order to 

ensure that their needs are properly addressed by the project results; 
• A team including members from four different companies distributed over Europe; 
• A very tight schedule with no tolerance for delays. 
 
The approach taken in response to these challenges is depicted in Fig. 10. The project has been split into 3 engineering 
iterations each focussing on one of the EGS-CC architectural layers (Kernel, Reference Implementations, and Reference 
Test Facility) and addressing Software Requirements and Component Design concurrently.  
 

 
Fig. 10. EGS-CC Phase B Project Plan 

Each iteration started with a preparation phase, followed by a team colocation session of a full week and subsequent 
elaboration of the results by individual team members. In the middle of each iteration, a workshop with all stakeholders 
was organised to present the results achieved and discuss open questions. The conclusions of the workshop were used to 
update the specifications and the design. The iterations were then concluded by an end iteration delivery followed by an 
informal review of the delivery by the stakeholders. Updates resulting from those reviews were implemented and 
delivered at the end of the following iteration. The three engineering iterations were followed by a consolidation phase 
for the software requirements specification terminated by a formal Software Requirements Review (SWRR) and a 
consolidation phase for the design terminated by a formal Preliminary Design Review (PDR). 
 
Concurrent engineering of requirements and design, extended team colocation sessions, and frequent reviews of 
intermediate results have proven to be very effective and has significantly contributed to increase of consensus and 
quality of the product. Maintaining the schedule without any slippage has not been easy and required very hard work 
but at the end this goal has been achieved as well. 
 
REFERENCES 
 
[1] Pecchioli, M. and Carranza, J.M., EGSC-CC: the Initiative is becoming a Reality, Workshop on Simulation for 

European Space Programmes (SESP), 2015 
[2] ECSS-E-ST-70-31C, Space engineering – Ground systems and operations – Monitoring and control data 

definition, July 2008. 
[3] CCSDS-910.3-G-3, Cross Support Concept - Part 1:  Space Link Extension, Green Book, Issue 3, March 2006 
[4] ECSS-E-ST-70-41A, Space engineering – Ground systems and operations – Telemetry and telecommand packet 

utilisation, January 2003 
[5] CCSDS-520.0-G-3, Mission Operations Services Concept, Green Book, Issue 3, December 2010 
[6] Service oriented architecture Modeling Language (SoaML), Issue 1.0., Object Management Group, May 2012 


	EGS-CC Phase B - a Report

