
Requirements of shared Data Management Services facilitating a Reference Architecture 

Realizing the Concepts of ECSS-E-TM-10-23  

 
Workshop on Simulation for European Space Programmes (SESP) 

24-26 March 2015 

 

ESA-ESTEC, Noordwijk, The Netherlands 

 
Tobias Hoppe

(1,3)
, Harald Eisenmann

(2)
 

 
(1)

Airbus Defence and Space 

FV Infrastructure, Engineering and Operations Products & Space Physics (TSOEC32) 

Claude-Dornier-Straße, D-88039 Immenstaad, Germany 

Email: Tobias.Hoppe@astrium.eads.net 
 

(2)
 Airbus Defence and Space 

Functional Verification & Engineering Infrastructure (TSOEC3) 

Claude-Dornier-Straße, D-88039 Immenstaad, Germany 

Email: Harald.Eisenmann@astrium.eads.net 

 
(3)

FZI Research Center for Information Technology 

Intelligent Systems and Production Engineering (ISPE) 

Haid-und Neu-Straße 10-14, D-76131 Karlsruhe, Germany 

Email: hoppe@fzi.de 

 

ABSTRACT 

 

The European technical memorandum ECSS-E-TM-10-23 defines the concepts for a reference architecture for systems 

engineering covering a Conceptual Data Model (CDM). Engineering data suffers the diversity of tools from different 

vendors with the challenge to apply a CDM consistent across disciplines. ECSS-E-TM-10-23 is the foundation for 

information integration by specifying the semantics of collected and desired data instances. In this paper the necessary 

steps to realize a reference architecture and the relation to the concepts of ECSS-E-TM-10-23are presented. This is 

followed by a discussion about the impact of architectures on functionalities and vice versa. The emerging technology 

Open Services for Lifecycle Collaboration (OSLC) is introduced and its benefits and drawbacks are illuminated from an 

architectural point of view. OSLC is a technology to build a tool independent architecture supporting a flexible and 

customizable communication. In addition, the realized architecture can be build up depending on project-specific needs. 

 

ISSUES WITH DISCIPLINE-SPANNING DATA EXCHANGE 
 

Many domains are involved in current spacecraft projects dealing with a considerable large data exchange shaping a big 

data environment. These domains partially use specialized Commercial-Off-The-Shelf (COTS) tools coming from 

different vendors. That is why they have to handle different technologies, paradigms, file-formats, and semantics. The 

outputs of these tools as well as input documents are stored in domain-specific engineering databases. Consequently, 

the databases are designed with respect to the requirements of the COTS tools of a certain domain, but they reflect only 

a specific section of the space system development life-cycle. 

 

Hence, there exists domain-specific Conceptual Data Models (CDMs) [12] making a semantic mapping of data between 

disciplines necessary. This is achieved by standard office products that are used to create documents being shared 

between domains. These documents are derived from the domain databases in manual processes. Fig. 1 illustrates data 

exchange based on standard office documents and commonly used text formats. 

 

This results in inconsistencies between documents and databases making consistent data management covering the 

whole engineering process hard to achieve. In addition, data exchange is time-consuming and error-prone due to needed 

data transformations. Furthermore, the distributed data management leads to difficulties in getting a consistent domain-

spanning dataset for integration tasks like simulations or system validations. Moreover, data is stored redundant in 

multiple domains. This provides a high potential for data inconsistencies. 

 



 

Fig. 1. Data interchange example realized by exchanging standard office documents and text documents. 

 

Proceeding with model-driven engineering [13] requires a mapping of semantically concepts close to those of the 

application domain, because semantics are influenced by the used tools rather than the data itself. Moreover, 

information interchange with common semantic data normalization is needed [8], [9]. On top of this, multiple 

functionalities for discipline-spanning engineering tasks are needed, like data life-cycle tracking, change impact 

analysis, consistency checking as well as verification and validation. 

 

Outline 

 

In this paper different implementation strategies for reference architectures are discussed and their impacts on the 

needed functionalities are analyzed. In the following section the European technical memorandum ECSS-E-TM-10-23 

[1] is briefly introduced focusing on the architectural implications of putting domain-specific data into a single data 

repository. Thereafter, the necessary steps to realize discipline-spanning reference architectures are explained. 

Afterwards, the impact on functionalities of different implementations of such architectures is discussed with special 

regard on overcoming the aforementioned issues concerning data exchange between COTS tools. In the final section, a 

conclusion is provided highlighting the missing elements of nowadays available frameworks for realizing the 

aforementioned architectures. 

 

CENTRAL ASPECTS OF ECSS-E-TM-10-23 AND THEIR RAMIFICATIONS 
 

This section briefly introduces the main concepts described by the technical memorandum ECSS-E-TM-10-23. 

Afterwards, the architectural implications of this standard are presented in detail. 

 

ECSS-E-TM-10-23 is an emerging European standard facilitating consistent cross-discipline management of data. It 

addresses the aforementioned issues by providing an approach focusing on the alignment of the described patchwork of 

tools and databases being used in spacecraft projects [1]. 

 

COTS tools are build up on their own CDM and cannot be adjusted concerning data formats and tool interfaces. These 

CDMs are conflated into a single project-specific CDM which in turn is based on a global CDM specified in ECSS-E-

TM-10-23. The global CDM reflects fundamental concepts of spacecraft system design. As a result, the specified global 

CDM is the foundation for a space system data repository that is used to store all information from all involved domains 

at a single place. 

 

Architectural Implications using a global CDM as described by ECSS-E-TM-10-23 

 

The usage of a global CDM as specified by ECSS-E-TM-10-23 results in multiple architectural implications. On the 

one side, a domain-spanning CDM and a related data repository implementing this CDM as defined by ECSS-E-TM-

10-23 are the foundation for: 

 

 A common knowledge of data and its structure by specifying the semantics of the individual elements. 

 Prevention of redundancy through direct usage of data provided by other domains and storing results directly 

in the central data repository. 

 Traceability of data changes, analysis of their impact, and consistent data management regarding both the 

consistency within a dataset from a single domain as well as domain-spanning consistency can be performed 

using the central repository’s data from other domains. 

 Getting a common baseline from multiple domains for domain-spanning tasks, like simulation, validation, and 

others without both manual gathering of data from multiple domains as well as without the pitfall of having 

inconsistent versions of data. 

  

On the other side, even using a domain-spanning CDM as described by ECSS-E-TM-10-23 will result in discipline-

specific CDMs due to discipline-specific adjustments needed to handle all aspects of a domain. Furthermore, the system 

development process has to be represented by project-specific adjustments in a domain-specific CDM. Data must be 

interchanged between domain-specific tools and a global system data repository. Therefore, the semantics of data from 



domain-specific tools must be mapped to the global semantics and vice versa. In state-of-the-art frameworks this 

mapping is executed by some kind of adapter being part of importers and exporters. Fig. 2 illustrates this mapping based 

on an abstract example. 

 

 

Fig. 2. The mapping of data between the engineering tool format and those of the central system model is realized in 

nowadays frameworks by adapters. They use internal functionalities of the systems engineering application to perform 

additional tasks, like consistency checks (CC), versioning, and data tracking. 

 

REALIZING AN ARCHITECTURE IMPLEMENTING THE CONCEPTS OF ECSS-E-TM-10-23 

 

In this section the general steps for realizing a framework implementing the concepts of ECSS-E-TM-10-23 are 

introduced. Additionally, the lost of semantics during working with data is inspected. This issue is also present even 

when a CDM is available and implemented by a framework. 

 

Framework implementations that have to deal with a huge amount of data in a multi-discipline environment follow 

mainly the following steps during development [14]: 

 

1. The data instances being collected and desired during runtime are described conceptually in a CDM. This 

supports getting a greater shared understanding of what data items mean and is the foundation for data 

integration as well as for a common data schema that will be used for data exchange. ECSS-E-TM-10-23 is an 

example for that kind of CDM. 

2. Data integration using semantic data normalization must be implemented to integrate discipline-tools into the 

system database which is a foundation for discipline-spanning tasks like simulation runs. 

3. The instance populations must be managed by several functionalities which allow working with the whole set 

of data. Among others, a global versioning system in form of common baselines is a key element for 

discipline-spanning functions. Further functionalities are for instance data migration and global data 

consistency checking.  

4. Owing to semantics integration in a central repository further knowledge about the collected information can 

be gained by implementing additional functionalities like reasoning. 

 

Causes for Lost Semantics during Working with Data even Using a global CDM 

 

In this context it must be ensured, that the global semantics are equally interpreted by each domain. Otherwise, a central 

aspect of ECSS-E-TM-10-23 namely the preservation of semantics will be lost while working with data. It may result in 

data interpretation mismatches leading to system design errors. The central points to consider in this context are: 

 

 Import and export of standard office documents can be performed by importers and exporters, but data from 

COTS-tools have different data formats, different paradigms, etc. Nevertheless, semantics of domain-specific 

data must be normalized to enable common data usage, even if proprietary formats needs to be analyzed or 

converted into a format that can be understood by a global system data repository. This offers a high potential 

for misinterpretation of data items being mapped to different concepts, especially if a corresponding concept 

will not exist on the other side. 

 In relation to the last point, it must be ensured, that the semantics of all elements of a CDM are the same for 

each of the involved domains. Take for instance a system element position being exchanged between two 



tools. If tool one takes a local coordination system and tool two expects positions in a global coordination 

system the positions needs to be transformed either during export from tool one or while performing the import 

into tool two. This depends on the semantics specified by the domain-spanning CDM, because it defines how a 

position is represented from a domain-spanning point of view. 

 The project life-cycle is not respected concerning change propagation from one domain to another. This results 

in explicit actions concerning data actualizations instead of using notifications from resource management 

system to automatically notify observers about new versions of data. 

 

A tool-specific metamodel and the part of the ECSS-E-TM-10-23 CDM being implemented by the corresponding tool 

differ in some points which leads to a semantic discrepancy between the applied metamodel and its counterpart in the 

CDM. Consequently, a semantic discrepancy between tools will exists whereby they are semantically harmonized in the 

CDM specified in ECSS-E-TM-10-23. This results in several issues concerning data exchange between tools as well as 

in relation with a systems engineering tool. As a result, nowadays frameworks implement individual adapters as shown 

in Fig. 2 to handle data exchange for each and every tool [6], [7]. 

 

IMPACT OF ARCHITECTURE ON THE IMPLEMENTATION 

 

In this section different architectures implementing the concepts of the technical memorandum ECSS-E-TM-10-23 are 

presented and compared with each other. Thereby, the different aspects of realizing architectures with a central 

repository are highlighted. Afterwards, the emerging technology Open Services for Lifecycle Collaboration (OSLC) [3], 

[4][3] is introduced. Its contribution for data exchange, the implications on the architecture, the opportunities in context 

of semantically rich data exchange, and the missing parts for a fully-fledged infrastructure are highlighted. 

  

From a very general point of view there exists only one feasible way to implement a reference architecture realizing the 

concepts of ECSS-E-TM-10-23, namely a central data repository with needed functionalities and the integration of 

engineering domains via well-specified interfaces. Architectures with a central repository are build-up following the 

hub and spoke principle with a central repository as hub and spokes as integration points for engineering domain tools. 

On the one side, this kind of architecture has multiple benefits [15]: 

 

 A limited number of communication paths, namely exactly one for each integrated engineering domain tool. 

 The dedicated communications paths lead to an efficient way of collecting needed information from a central 

repository and storing results in it. 

 Spokes can be easily replaced which has no effects on further spokes. 

 For information gathering it is not necessarily important to know the source of the information, because all 

information are available in the central repository and can be used directly. 

 

On the other side, there are some drawbacks too: 

 The central repository is a single point of failure which makes it necessary to implement further functions for 

data shadowing. 

 In addition to the aforementioned point, the performance of a single central repository can be rather poor if 

data is not distributed on several machines accordingly.  

 

Apart from this overall architecture view the needed functionalities can be implemented differently in a hub and spoke 

architecture to overcome the drawbacks of this kind of architecture depending on the individual needs. The two 

principally possible ways are: 

 

1. A single repository implementing ECSS-E-TM-10-23 is used to capture the whole data from all tools of the 

involved engineering domains. Therefore, the repository needs to implement all needed functionalities and the 

engineering domains only provide the data as produced by their specific tools. The data exchange is realized 

by a common data schema. This centralized approach is illustrated in Fehler! Verweisquelle konnte nicht 

gefunden werden.. The advantages of this implementation are the presence of a central application performing 

all domain-spanning tasks and there is only one implementation for each function which reduces the chance of 

semantics discrepancies. The disadvantage of this approach is the strengthening of the drawbacks of a hub and 

spoke architecture as mentioned beforehand. 

2. Compared to the first approach, the functionality could be mainly distributed on the engineering domains 

which are self-responsible for their specific tasks. The central repository only manages the data integration 

from the domains and is responsible for domain-spanning tasks. Fehler! Verweisquelle konnte nicht 

gefunden werden. illustrates this more de-centralized approach. The main advantage of this approach is the 

limitation of the drawbacks coming with hub and spoke architectures, because the performance is improved by 

delegating as much tasks as possible to the engineering domains. Moreover, the domains can partially work 

with their own data structures and are not forced to use the data structure coming from the central repository. 

This might result in less performance impacts. The most impacting disadvantage of using domain integration 



with many functions is a hard replacement of domain integrations, because they need to implement all 

functionalities providing the same results for equal requests to the central repository. A further disadvantage of 

extracting functionality to domains is the high potential of semantic discrepancy between different 

implementations of the same functions in different domains. 

 

It is not worth mentioning, that other architectures without a central repository will not provide a proper solution, 

because the involved tools in Model-Based Systems Engineering (MBSE) are far too specific [10]. In addition, domain-

spanning functionalities like consistency checking are essential and in reality hard to be realized autonomously by 

engineering domains, because of a missing institution monitoring domain-spanning tasks. Moreover, those approaches 

would result in an infrastructure that is hard to adjust to project-specifics and that is hard to maintain regarding the 

change of used tools and changed communication paths. In contrast, the approaches with a central repository would 

enable domain-spanning data access which is performed automatically in the background by transforming domain-

specific data into the format specified in the CDM and providing a domain-spanning view on the data. 

 

 

Fig. 3. An illustration of a centralized reference architecture for systems engineering. The systems engineering 

application represented by the system model implements all functionalities internally, like consistency checks (CC), 

versioning, and data tracking. 

 

 

Fig. 4. An illustration of a de-centralized reference architecture for systems engineering. The engineering tool adapters 

encapsulate functionalities to perform additional tasks, like consistency checking (CC), versioning (Ver), and data 

tracking (Tr). Those functionalities must not be performed by the central application any longer. 



 

Challenges to Meet during Architecture Implementation 

 

Realizing a reference architecture implementing the concepts of ECSS-E-TM-10-23 requires the four steps described in 

the previous section, namely CDM development, data integration realization, data management, and data exploration 

functionality.  

 

The first challenge is the implementation of the CDM as specified by ECSS-E-TM-10-23, because several of the 

modelled concepts cannot be taken over in the implementation due to the used technology for implementing the model 

as well as due to runtime performance reasons. On top of this, a mapping between the data as specified in a CDM and 

physical resources must be specified. This mapping is actually not present in ECSS-E-TM-10-23 and should be a part of 

it, because of the close relation to a corresponding CDM. 

 

The second challenge to meet is the integration of engineering domain data into the central repository. Therefore, a 

resource exchange schema has to be derived from the data to resource mapping specified in the first step. This is the 

foundation for controlled data exchange as offered by emerging technologies like OSLC. A short introduction into 

OSLC will be given in the next subsection. 

 

Depending on the chosen architecture the needed functionalities need to be implemented forming the central application 

with the central data repository (see central architecture Fig. 3) otherwise the central application is as much lightweight 

as possible and most of the functions are extracted into some kind of adapters for engineering tools forming a more de-

centralized architecture as depicted in Fig. 4. Hereby, the benefits and drawbacks of de-centralizing a function shall be 

calculated carefully and further research is necessary to take the most proper decisions. 

 

Finally, the last challenge is the realization of additional functionality being enabled by having all information in a 

central repository. Amongst others, reasoning might have a big impact on learning more about a developing system. 

Furthermore, property disjoint checks can be performed and ontologies might play a role. 

 

An Introduction into OSLC 

 

OSLC is an emerging technology to realize controlled big engineering information exchange. It is developed by an open 

community building practical specifications for integration of software components. The specifications build on the 

W3C Resource Description Framework (RDF) [11] whereby each resource is defined in terms of RDF classes and 

properties. A resource is each piece of information that can be exchanged, like text, xml, rdf, html, and many more text 

formats. Consequently, each resource is linked in some way to some internal block of information. The operations on 

resources are performed using the HTTP protocol and dependencies between resources are realized via links. 

 

The OSLC framework realizes the principle of a service oriented architecture with a centralized registry where all 

services have to be registered and can be looked up afterwards. Further information about OSLC can be found on the 

community website [3]. 

 

OSLC as Foundation for Engineering Data Interchange 

 

In the frame of engineering data exchange, OSLC provides a standardized protocol for information interchange between 

any kinds of engineering tools by tool-specific OSLC-Adapters. They encapsulate domain-specific tools from the 

environment and provide a common interface for data interchange [1]. 

 

OSLC is scalable regarding multi-user support and project-specific environments, because additional tools can be easily 

integrated into an already existing infrastructure by registering their OSLC-Adapters or by consuming data using 

additional OSLC-Clients. Additionally, OSLC-Clients can use multiple OSLC-Adapters to gather distributed data from 

multiple parts of the infrastructure. This is especially helpful to perform tasks relying on data from multiple domains, 

like simulation tasks. Furthermore, an OSLC-specification explicitly allows additional content being submitted in RDF-

resources. This feature can be used to transmit customized elements. The OSLC-Adapter and OSLC-Clients transmit 

only RDF-resources being conform to the underlying specification. 

 

Implications on the Architecture Realizing ECSS-E-TM-10-23 with OSLC 

 

Realizing the concepts of ECSS-E-TM-10-23 with OSLC leads to a reference architecture for systems engineering 

supporting the following features: 

 The OSLC-Adapters work as wrappers for the domain-specific COTS-tools and can transform tool-specific 

semantics into the global semantics of the space system data repository and vice versa. Therefore, a resource 

specification derived from the CDM specified in ECSS-E-TM-10-23 is needed to ensure semantic correctness 

of the data interchange between OSLC-Adapters and OSLC-Clients. 



 Tool-specifics are encapsulated from the data exchange by a tool’s OSLC-Adapter or OSLC-Client. 

 The foundation for vendor-independent reference architectures will be available supporting a well-defined 

communication with any kind of tool being integrated via an OSLC-Client or OSLC-Adapter that implements 

the resource specification for ECSS-E-TM-10-23. 

 The architecture is completely flexible regarding the communications paths, because each OSLC-Client gets 

delegated to the providing OSLC-Adapter by the OSLC-Adapter Registry. 

 Additional tasks can be performed by OSLC-Adapters and OSLC-Clients, like consistency checks which 

might result in rejection of changes if a dataset became inconsistent by a change. 

 The exchanged data can be tracked by an OSLC-Adapter to provide additional features for OSLC-Clients, like 

individual fine-grained notifications on data updates for those data being accessed by a certain OSLC-Client. 

 Project-specific adjustments of RDF-Resources can be realized by optional parameters being explicitly 

allowed in the OSLC specification. 

 

Nevertheless, OSLC does not provide any methodology to derive a resource specification from a CDM. Due to that, the 

first challenge of architecture implementation is still not meet completely. Tool integration can be performed based on 

OSLC whereby customized data structures cannot be specified semantically strong, because OSLC is based on fixed 

resource specifications being implemented by OSLC-Clients and OSLC-Adapters. Due to that, those resources cannot 

be changed during runtime and must be specified rather generic to handle all kinds of customization leading to a loss of 

semantics. 

 

The OSLC-Clients and OSLC-Adapters can be easily extended by further functionalities working with both internal 

data structures of a domain as well as the semantically normalized data structures being exchanged. This allows 

centralized as well as de-centralized implementations. It only depends on how much of the functionality will be 

included in the central systems engineering application and which parts will be outsourced into the OSLC-Adapters and 

OSLC-clients of the other tools. The decision between a centralized and a de-centralized reference architecture must be 

taken explicitly for each functionality, because for some functionalities it makes sense to perform them using the locally 

available data, but for those functionalities based on widely distributed data a centralized realization on the systems 

engineering application will fit better. Even for some cases a mixture of both, will be an optimized solution. 

 

CONCLUSION 
 

This paper introduces different architectures for implementing a reference architecture realizing the concepts of ECSS-

E-TM-10-23 and discusses their influences on the needed functionalities. Obviously, there is a need for integrating all 

tools of the domains being involved in the system development life-cycle based on MBSE. Therefore, different 

frameworks, even COTS-tools from multiple vendors supporting a variety of data formats, need to be integrated. The 

technical memorandum ECSS-E-TM-10-23 specifies a CDM for space systems engineering to form a common 

understanding of data over engineering domains and all involved institutions. 

 

Realizing an architecture implementing the concepts of ECSS-E-TM-10-23 requires mainly four steps to be taken. The 

first one is mainly covered by ECSS-E-TM-10-23 by providing a CDM, but a derived resource description is missing. 

The second one focuses on tool integration. The last two steps deal with the implementation of needed and enabled 

functionalities. The implementation of each step has a significant impact on the resulting architecture making others 

than those using a central data repository impossible. The different manifestations of architectures with a central data 

repository have their own benefits and drawbacks. With regard on implementing the concepts of ECSS-E-TM-10-23 a 

more de-centralized approach putting as much functions as possible into the engineering domains keeps the 

responsibility for the data closer at the people having the most knowledge about it. 

 

In this paper a closer look is taken into the emerging technology OSLC and its integration into as well as its impact on 

architectures. OSLC is a technology to build a COTS-tool independent reference architecture for systems engineering 

supporting a flexible and customizable communication with each registered OSLC-Adapter. Furthermore, the OSLC-

Adapters can be enhanced by additional tasks, like data exchange tracking to inform data consumers about changes. 

Moreover, aspects, like version control and consistency checking, can be put into the OSLC-Adapters to pass over from 

common centralized architectures to more decentralized architectures to resolve the bottle-neck of a central application 

performing all tasks even not domain-spanning ones. In addition, the architecture can be built up depending on the 

individual needs of a project by adding or removing available OSLC-Clients and OSLC-Adapters from the current 

infrastructure. 

 

Finally, OSLC is a step in the right direction, but still not enough. Several questions need to be answered before a 

reference architecture implementing the concepts of ECSS-E-TM-10-23 will be realized. The central points are the 

derivation of a data to resource mapping from a CDM, the handling of customizable data structures in correlation with 

semantically strong data exchange, and which functionalities can be implemented de-centralized. 

 



 

REFERENCES 

 

[1] T. Hoppe, and H. Eisenmann, “Realizing the Concepts of ECSS-E-TM-10-23 by Means of a Reference 

Architecture facilitated with OSLC“, at 6th International Workshop on Systems and Concurrent Engineering for 

Space Applications (SECESA), Stuttgart, Germany, October 08-10, 2014. 

[2] ECSS European Cooperation for Space Standardization, “ECSS-E-TM-10-23A - Space Engineering - Space 

System Data Repository,” ECSS Secretariat ESA-ESTEC Requirements & Standards Division, Noordwijk, The 

Netherlands, November, 25
th

, 2011. 

[3] Open Services for Lifecycle Collaboration, Available at http://open-services.net/ [Online] 

[4] OSLC Primer – Online book, Available at http://open-services.net/uploads/resources/OSLC_Primer_-

_Learning_the_concepts_of_OSLC.pdf [Online] 

[5] OSLC Core Specification Workgroup. OSLC core specification version 2.0. Open Services for Lifecycle 

Collaboration, Tech. Rep., 2010. 

[6] ESA, 2012, Virtual Spacecraft Design. Available at http://www.vsd-project.org/ [Online]. 

[7] H. Eisenmann, J. Fuchs, D. de Wilde, and V. Basso, “ESA Virtual Spacecraft Design“, at 5th International 

Workshop on Systems and Concurrent Engineering for Space Applications (SECESA), Lisbon, Portugal, October 

17-19, 2012. 

[8] H. P. de Koning, H. Eisenmann, and M. Bandecchi, “Evolving standardization supporting model based systems 

engineering“, 2010. 

[9] H. Eisenmann, J. Miro, and H. P. de Koning, “MBSE for European Space-Systems Development“, INCOSE 

Insight, 12(4):47–53, 2009. 

[10] S. Friedenthal, R. Griego, and M. Sampson, “INCOSE Model Based Systems Engineering (MBSE) Initiative“, 

INCOSE MBSE Track, 2007. 

[11] RDF Working Group W3C, RDF – semantic web standards, 2004, Available at http://www.w3.org/RDF/ [Online]. 

[12] J. Krogstie, A. L. Opdahl, and S. Brinkkemper, “Conceptual Modelling in Information Systems Engineering“, 

Springer, 2007. 

[13] A. G. Kleppe, J. B. Warmer, and W. Bast, “MDA explained, the model driven architecture: Practice and promise“, 

Addison-Wesley Professional, 2003. 

[14] A. Rosenthal, L. Seligman, and S. Renner, “From semantic integration to semantics management: case studies and 

a way forward“, ACM SIGMOD Record, 2004. 

[15] G. Hohpe, B. Woolf, “Enterprise integration patterns: Designing, building, and deploying messaging solutions“, 

Addison-Wesley Professional, 2004. 

 


