

Integrated Solution for Rapid Development of Complex GNC Software

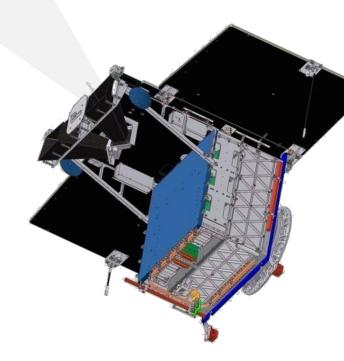
J.-S. Ardaens & G. Gaias

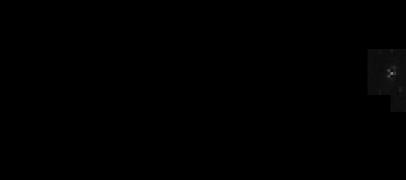
Slide 1 J.S. Ardaens > Integrated Solution for Rapid Development of Complex GNC Software > SESP 2015, 24.3.2015, ESTEC

Motivations

The possibility to test a system in-orbit is rare and thus precious

 \Rightarrow unique opportunity to gain flight experience and improve the technology readiness level


- Might be a difficult and risky endeavor in the presence of constraints affecting the available resources:
 - → Limited human resources
 - → Limited development time
 - ✓ Limited time slot in orbit for validation and tests
- Need for tools and processes to speed up the development time without affecting the quality


The AVANTI Experiment

- Autonomous Vision Approach-Navigation and Target Identification
- Spaceborne experiment using the DLR's BIROS satellite (launch in 2016)
- Paves the way for future on-orbit servicing missions
- Picosatellite embarked and ejected in orbit
- One star tracker employed as far-range camera to track the picosatellite
- → Goal: approach to a non-cooperative object
 - fully autonomously
 - safe and fuel-efficient manner
 - low-cost sensor
- Based on the know-how gained during the ARGON experiment (May 2012) using the PRISMA formation-flying demonstrator

how to recognize a target object at 30 km distance

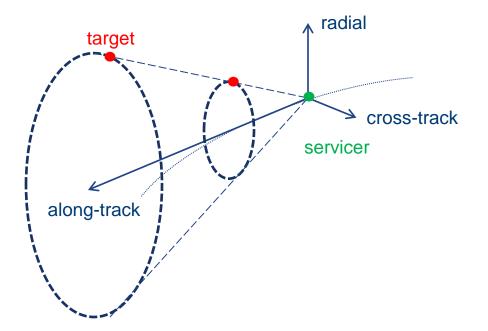

target

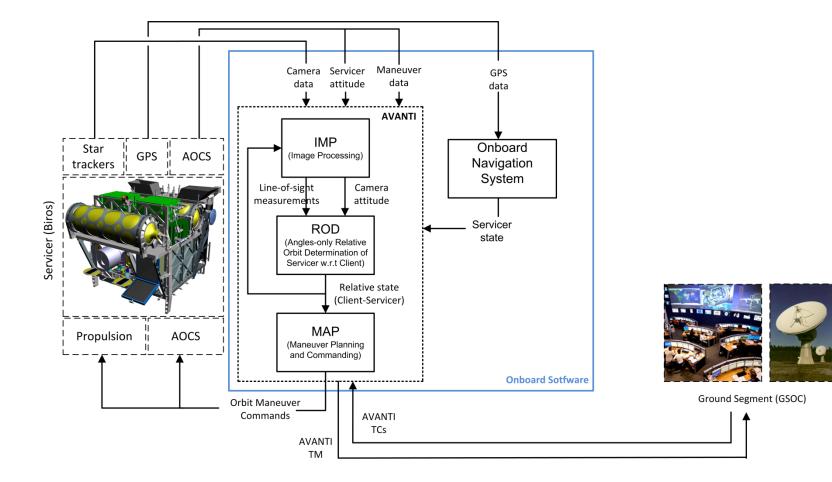
image from the PRISMA mission during the ARGON experiment

Angles-Only Navigation

- \checkmark No range measurement \Rightarrow very weak observability
- → Infinity of solutions corresponding to a measurement profile
- → Calibrated maneuvers are needed to improve the observability

Challenges

Reduced resources


- → Small team (2 people)
- → Short development time (3 years)
- \neg Only one slot in orbit after the separation \Rightarrow limited possibilities of software patch
- Zimited onboard computer

→ High system complexity

- \neg Angle-only navigation is weakly observable \Rightarrow need for maneuvers to improve the observability
- Maneuvers are part of a rendezvous profile which is computed onboard autonomously
- The approach has to be safe (**risk of collision**), fuel-efficient and robust against contigencies
- Pointing the star tracker towards the CubeSat affects the thermal and power budget
- → BIROS does not have 3D maneuver capabilities ⇒ need to rotate the spacecraft during the maneuver ⇒ loss of visibility
- ✓ Visibility also affected by eclipses and camera blinding due to the Sun
- ✓ High differential drag (500km altitude) impacts the navigation and guidance algorithm

AVANTI Software Architecture

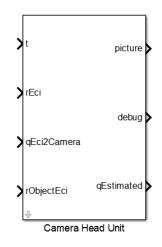
Integrated Development Solution

- → Early definition of interfaces required for the ground segment
- Early prototype required for satellite integration
- But the design and implementation of such a complex and novel GNC algorithm is time consuming

 \Rightarrow attempt to conduct algorithm design, implementation, integration & documentation simultaneously

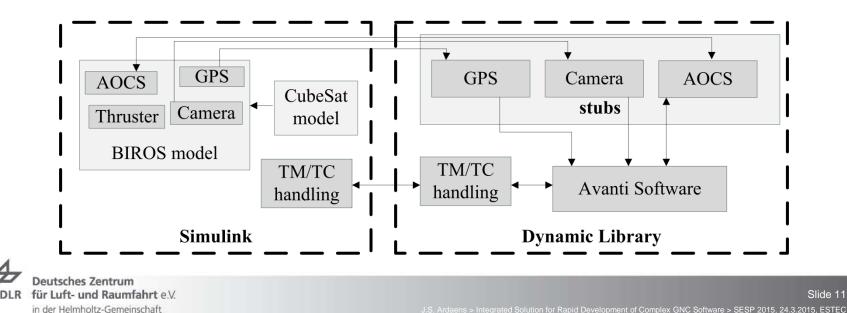
- Problem: tools & development environment are not compatible
 - → Simulink Environment for GNC Design & Development
 - → Target OS: RODOS operating system (C++)
 - ✓ Miscellaneous formats to exchange data with partners
- Solutions retained for the development of AVANTI
 - → Interfacing Simulink directly with the flight software
 - → Interface definition as unique meta data source

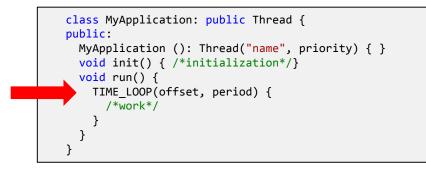
Simulink Simulation Environment


Design and validation of the algorithms (target identification, robust angle-only navigation, autonomous rendezvous) using the GSOC Multi-Satellite Simulator

- ✓ Successfully employed for the design and validation of past formation flying experiments
 - → TanDEM-X Autonomous Formation Flying System
 - GPS-Based Spaceborne Autonomous Formation Flying experiment on the PRISMA technology demonstrator
- **Simulink-based** environment comprising high-fidelity models:
 - Orbit propagation including orbital pertubations (drag, solar radiation pressure, third body perturbation)
 - ✓ Models for environment (Earth orientation parameters, position of the Sun, eclipses)
 - Implementation of attitude profile (target pointing, thruster firing mode, Earth pointing)
 - → Sensors and actuators (camera, model)

Example: camera model

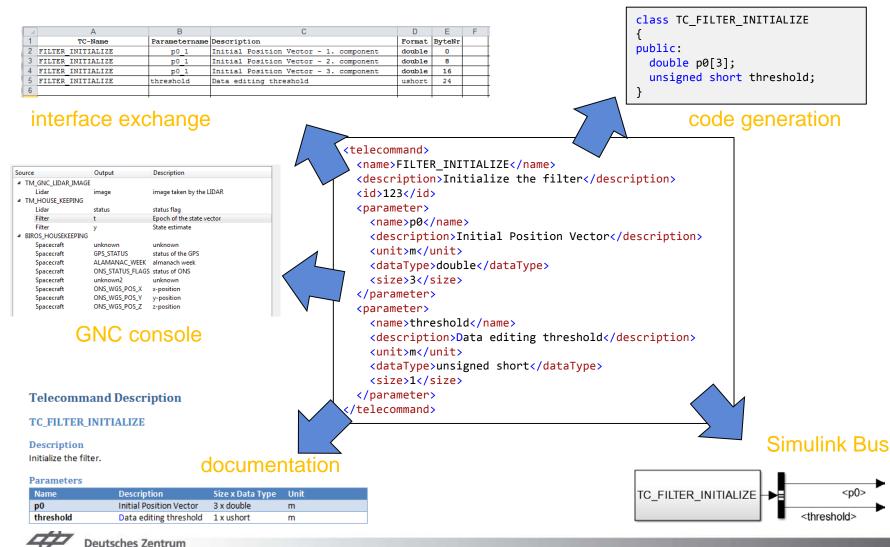

- → High Fidelity Model required to prevent any bad suprise in orbit
 - → image distortion
 - → aberration
 - → CCD model
 - → radiometric model of the target
 - → camera anomaly (hot spot)


Interfacing Simulink with the Flight Software

- The flight software relies on OS-specific functionality (threading, timing, interprocess communication) and expect the presence of other components (like sensors and actuators).
- The flight software is compiled as independent dynamic library, based on a special library which emulates part of the RODOS functionalities on the host computer
- Components of the bus satellites are replaced by stubs fed by data coming from the Simulink model

Thread Scheduling

- Simulink takes care of task scheduling
- → The flight software is written in the form of an infinite loop



Retained solution: rewrite the TIME_LOOP function to be triggered by Simulink

#define TIME_LOOP(begin,period) for (count=0; waitForTrigger();count++)

Interface Definition from a Unique Data Base

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Conclusion

- → Development and integration time can be reduced by
 - → Embedding directly an exogen flight software in Simulink
 - → Generating all interface products automatically from a unique data base
- ✓ See you in 2016 for the conduction of the AVANTI experiment!

