Connecting MATLAB to the SMP2 Standard

Harmonizing new and traditional approaches for automatic model transfer

Presenters:
- Wim Lammen (NLR),
- David Jaffry (MathWorks)

Contributors:
- Q. Wijnands (ESTEC),
- J. Moelands (NLR)

March 26th, 2015
EGSE & SESP 2015 Conference
ESTEC, The Netherlands
Presentation overview

MOSAIC 10 activity (ESTEC/NLR/MathWorks collaboration)

● Traditional MOSAIC approach
 ● Latest developments
 ● New release of transfer tool: MOSAIC 10

● Studying a new approach
 ● Based on Target Language Compiler technology
 ● Direct configuration of code generator
 ● Feasibility study
 ● Prototype developed

● Integration/harmonization of approaches: future plans

● Conclusions
Introduction: automatic model transfer

- **Purpose**
 - Re-use of models during a complete project life-cycle to reduce cost, time, effort

- **Approach**
 - Automate model transfer between COTS tools and model standards

- **Product**
 - MOSAIC

Model-Oriented Software Automatic Interface Converter

Modelling tools:
- MATLAB
- EcosimPro
- 20-sim
- Modelica
- ..
MOSAIC usage

- Usage principles
 - Model adaptation in originating environment
 - MOSAIC treats model as black box
 - Analyses the source code’s API and adds interfacing code to it
 - End-to-end support

- Free-of-charge license in ESA member states

- Used in European space industry
 - For more than 15 years
 - In a large number of projects

- Latest version: MOSAIC 10 (March. 2015)
Example use case, traditional MOSAIC approach

Develop spacecraft system models

Simulink

Export

Simulink Coder

Automatic conversion

MOSAIC

Compiled SMP2 model

SMP2 compliant simulator (C, C++, catalogue, etc.)

Visual Studio

Spacecraft simulation

SimVis Designer

(Re)connect models

SIMSAT

SMP2 compliant simulator with integrated models

NLR - Dedicated to innovation in aerospace
MOSAIC 10 tool upgrade: key requirements

- Upgrade MOSAIC 9 to latest MATLAB version (R2014a at start of project)
- Maintain backward compatibility with MOSAIC 9 (e.g. EcosimPro and 20-sim support)

[Diagram showing the transfer of model to Simulink R2014a, EcosimPro 4.8, and 20-sim 4.1, resulting in exported C code and ready-to-use code.]

SMP2 Standard:
- SimVis2.2/SIMSAT2
- SimVis3.1/SIMSAT4.3
- Basiles
- EuroSim Mk5.2
MOSAIC 10 results: Transfer combinations

- Modular architecture allows multiple transfer combinations
- Not all combinations are validated yet
MOSAIC 10 results: Transfer combinations (Simulink input)

- Modular architecture allows multiple transfer combinations
- Not all combinations are validated yet (■ = validated)
MOSAIC 10 results: Transfer combinations (EcosimPro input, MOSAIC 9 compatibility)

- Modular architecture allows multiple transfer combinations
- Not all combinations are validated yet (■ = validated, → = not validated, □ = not yet supported)
MOSAIC 10 results: Transfer combinations (20-sim input, MOSAIC 9 compatibility)

- Modular architecture allows multiple transfer combinations
- Not all combinations are validated yet (● = validated, ➡ = not validated, □ = not yet supported)
MOSAIC 10 validation

- Validated transfer combinations based on ESTEC use cases
- Other transfer combinations possible as well (at own ‘risk’)
- Tested with MOSAIC internal test suite and ESTEC acceptance models
- SMP2 Conformance suite, for compliance verification of MOSAIC 10 output SMP2 files
MOSAIC 10: specific user requests addressed

- Parsing of Simulink parameters with multiple comment lines in the generated code.
- The SMP2 input attribute for parameter fields has been adapted.
- SMP2 Universally Unique Identifier (UUID) issue (see paper)
 - Problem analysed and solution proposed.
 - Algorithm to be implemented in future version
Introduction to Simulink

Code Generation

- Automatic code generation from model
- Suitable for any embedded application
- Early and continuous verification
Studying New Approach

What? Why? How?

Simulink
Studying New Approach

What? Why? How?

Simulink

- Direct code generation
- R2010b, R2014a and +
Studying New Approach

What? Why? How?

Simulink

- STF: Custom System Target File
- TLC: Target Language Compiler File
Embedded Coder
Generate custom C/C++ code with TLC

Simulink Coder

TLC program:
- System target file
- Block target files
- Inlined S-function target files
- Target Language Compiler function library

Run-time interface support files

- Simulink model
 - `model.slx`
- Simulink Coder Build
 - `model.rtw`
- Target Language Compiler
 - `model.c`
- Make
 - `model.mk`
- `model.exe`

Model.rtw = Intermediate Representation

- SMP Compliant model
 - C/C++
 - XML artefacts

SMP.TLC
Validation of the SMP.tlc prototype
Validation of the SMP.tlc prototype

- Tested with ESA Gyroscope Simulink model

- Validation:
 - Inspection of the generated SMP artefacts and source code, comparison with MOSAIC generated output
 - Check with SMP2 Conformance Suite
 - Successful load in EuroSim Mk5 on a 32-bits Linux platform
Study Results

- STF supporting main features of modeling and Embedded Coder options

- Mapping doc between Simulink and SMP

- Identification of new features or evolutions
Integrating SMP.tlc with MOSAIC

- **Future work:** Further harmonize new and traditional model transfer approaches

- **Ensure efficient maintainability**

- **Avoid duplication of functionality**

- **Several options:**
 - Stand-alone STF from end-to-end (target environment support to be added)
 - STF connects to MOSAIC modular architecture
Traditional MOSAIC architecture

- Generated model source code
 - MATLAB Module: GRT, ERT, GRT malloc
- C source code
- API + source code (C++)
 - EcosimPro Module
- XML file + source code (C++)
 - 20-sim Module

Modeling platform support

- Tool independent model specification
 - Standard support
 - Simulation platform support
 - Basiles Module
 - SIMSAT4 Module
 - SimVis / SIMSAT2 Module
 - EuroSim Native Module
 - EuroSim Mk4 Module
Possible MOSAIC architecture with STF

- **STF**
- **API + source code (C++)**
- **XML file + source code (C++)**

Modeling platform support
- STF Integration Module
- EcosimPro Module
- 20-sim Module

Tool independent model specification
- Model description Module

Standard support
- SMP2 Module
- EuroSim Native Module
- Basiles Module
- SIMSAT4 Module
- SimVis / SIMSAT2 Module
- EuroSim Mk4 Module
Conclusions

- **MOSAIC 10**
 - Free-of-charge in ESA member states (license request: mosaic@nlr.nl)
 - Supports recent updates to corresponding simulation environments

- **System Target File**
 - Effective collaboration between NLR/ESA/MathWorks
 - Complementary approach
 - Meta data of Simulink model accessed directly
 - Less development effort expected

- **Integration of approaches**
 - New and traditional transfer approach fit well together
 - Integration activity planned -> MOSAIC 11
 - Contribute to high-level objective
 - Cost reduction of space system development
 - Efficient harmonization of System Modelling & Simulation (SM&S)
Dedicated to innovation in aerospace

www.nlr.nl - info@nlr.nl