
JAVA MULTI-MISSION SIMULATION FRAMEWORK: EVOLUTIONS AND
IMPROVEMENTS

(SESP) 2015

Pierre Bornuat (1), Thierry Warrot (2), Olivier Podevin (1)
(1) CS Systèmes d’Information (CS SI), 5, Rue Brindejonc des Moulinais - BP 15872 - 31506 Toulouse Cedex 05 -

France, Email: pierre.bornuat@c-s.fr / olivier.podevin@c-s.fr
(2) CNES, 18, avenue Edouard Belin - 31401 TOULOUSE cedex 9 – France, Email: Thierry.warrot@cnes.fr

ABSTRACT

CNES (Centre National d’Etudes Spatiales – France)
has a large mission engineering experience accumulated
through different Earth Observation missions. Turning
towards the future, CNES has invested in a new Java-
based Mission Simulation framework. This framework,
called ALIS, which stands for “Atelier Logiciel pour
l‘Ingénierie Système” (Simulation Framework for
Mission Engineering), models a mission simulation loop
which is composed of : mission parameters, ground and
in-flight constraints such as number and location of
images to capture, orbit, on board memory capacity,
number and location of TM (TeleMetry) ground
stations, platform agility capacities, etc., in order to
assess the performances of the global acquisition /
reception of the acquired images. Current development
and maintenance of ALIS framework is held by CS SI
since 2011.

This kind of simulation, which addresses large data
management and computer time consuming, is a major
concern.

This paper presents the different capabilities such a
framework offers and how it is and will be used at
CNES. Moreover, among recent technical concerns, two
of them have required particular attention and design
efforts:

- the computation capacities strengthening for high
CPU-intensive simulations,

- the need to rapidly incorporate new functionalities
to satisfy a wider scope of potential users.

1. INTRODUCTION
After an introductory focus on how mission simulation
is understood and applied at CNES (Centre National
d’Etudes Spatiales – France) and on the framework
architecture of ALIS (Atelier Logiciel pour l‘Ingénierie
Système - Simulation Framework for Mission
Engineering) to detail technological topics, this paper
highlights two technical topics showing:

- how, from a standalone simulator’s infrastructure,
ALIS has moved to a distributed architecture, in
order, in particular, to run simulations on
distributed environments (client/server clusters,
etc.). Intrinsic problems and obvious technical
profits are detailed;

- how the use of COTS (Commercial Off-The-Shelf
software) with a high readiness level offers a large
flexibility and enrichment of the framework.

As a conclusion, the paper draws the full benefits such a
framework can offer to entities dealing with end to end
mission performances.

2. MISSION SIMULATION AT CNES

2.1 Context

Earth observation systems are composed of satellites,
ground stations, networks, etc. Once launched, a
satellite flies imperturbably on its orbit, but nowadays,
satellites are “agile”, which means they can change their
orientation (not their trajectory) quickly to take pictures.

Few of them can compute by themselves orientation and
time to take pictures, but this is generally done on larger
computers, on ground, in the “operational mission
planning software” hosted at the “Mission Programming
Centre”. This kind of software must be strongly robust
to be operational 24 hours a day, 7 days a week.

On the contrary, mission simulation software are study
software which aim at simulating the “operational
mission planning software” before it is actually built.
Therefore, they do not need to be as robust as the
operational software, but they need to be versatile to
allow trying and testing many algorithms and
parameters, in order to define, with the System
customers, the best optimized set of options.

2.2 Taking shots from space

Contrary to a basic camera, which is based on a CCD
matrix (Charge-Coupled Device), a satellite’s camera is
only a single line of CCD detectors. A picture is taken
by, first switching “on” the CCD line, second by leaving
the satellite move forward on its orbit, and last by
switching “off” the CCD line. In true life, in order to get
high quality pictures, satellite orientation must
continuously and very precisely be controlled during the
shot, which needs very complex mathematic
computations. However, the principle remains as
described above.

Thus, to take a picture with a satellite, one must define
the satellite orientation, when to switch “on”, when to
switch “off” and how to rotate in between: and do so for

each taken picture. This corresponds to the “Acquisition
Kinematics Plan”.

Satellites now hold a large number of pictures in
memory but the latter is limited. It is therefore necessary
to download these pictures on ground stations. But if a
satellite is on the opposite side of the Earth from the
station, it must wait until it arrives above the ground
station to begin downloading pictures. Thus, “mission
planning software” must compute all downloads’ begin
and end times: this constitutes the “Acquisition
Download Plan”.

These kinds of plans must be uploaded to the satellite
when it passes above a ground station to prepare the
satellite’s work for the next day.

2.3 Mission Programming engineer's tasks

We just talked about how to take pictures. But what
picture shall we take first? What if the region to observe
is larger than the CCD line? If there are lots of pictures
to take, which is always the case, what is the optimized
scheduling to take them, according to their number,
their priorities and taking into account customers’
rights? Is there still enough free memory and electrical
power on board to make a shoot or is it time to point
solar arrays to sun direction? What if there are clouds on
the interesting part of the picture? What is the average
delay between a picture request deposit and its
obtaining? How many 3D pictures can be taken during 6
months?

All these questions must be answered by mission
programming engineers and/or implemented in the final
“operational mission planning software”.

Hereafter are some other goals a mission programming
engineer has to handle:

- Before developing the “operational mission
planning software”

• Organize experimentation campaigns with
customers, to specify needs and present the
system and its functioning (ex: principles and
tuning of the system sharing rules, negotiation
principles, prioritization helpers, etc.),

• Study and find the best algorithms and
parameter set,

• Size the system (ground networks, satellites’
configuration, satellites’ agility, etc.),

• Generate mission contexts to check
provisioning (AOCS - Attitude and Orbital
Control Subsystem, power…),

• Estimate mission performances (capacity on a
specific region, capacity on one orbit, etc.),

• Estimate temporal performances,

• Teach future users how to use the System,

• Communicate or advertise about the System
(using videos showing the system while

working).

- After developing the “operational mission planning
software”

• Validate that each service and function of the
“operational mission planning software”
calculates correctly. Simulator is, in this case,
used to produces reference data and compare
them with the one computed by the operational
software),

• Check produced mission plans (through
cartography and 3D visualizations, chronogram
displays…).

Combination is so enormous and complexity so high
that, in order to perform his work, the mission engineer
needs to use mission planning simulators.

2.4 Mission planning loop

The following diagram (Fig. 1) summarizes the main
stages of the “mission planning loop” which are
scheduled everyday (sometimes several times a day) to
prepare the satellites’ work plans for the next few days.

There are mainly two programs: Users’ interacting
software and Satellites’ working plans computing
software.

Fig. 1 – Mission Planning Loop

The first step of users’ interacting software consists in
the “Submission” of zone imaging requests by users.

Each zone is then “Analysed”, i.e. virtually cut in small
rectangles (AcqR: Acquisition Request) whose width
corresponds to the CCD line width.

For the few next days, satellites orbits are well known.
Thus it is possible to collect all AcqR underlying
satellites trajectories. The third stage, “Inventory ”,
builds this AcqR list and computes time slots available
to take pictures according to constraints: for instance, a
same AcqR must be acquired several times with precise
geometric constraints in order to provide 3D pictures.

The fourth stage, “Ranking”, can be done manually
and/or automatically. It consists in sorting the candidate
acquisitions to meet users’ priorities. These sorted lists
are then sent to the satellites’ working plans
computing software (fifth stage).

All that is left is then to upload working plans on board,
during next ground station flying over.

2.5 What is a mission simulator?

What has been presented in the previous paragraphs
corresponds to “operational mission planning” software.

But within a simulator, many other tasks shall be
performed: simulate electric and memory consumption,
simulate picture rejection according to cloud
probability, compute statistics about overall acquisition
performances on several months, etc.

All these computations shall be done as quickly as
possible. We do not need real time simulation (which
would take several months due to satellites’ speed), but
accelerated time.

Note that in this kind of simulator, we assume that
satellites do exactly what they are intended to do. We do
not try to take into account AOCS inaccuracies and do
not simulate on board software. Thus, only topics
impacting overall system performances such as memory
and power are taken into account.

3. ALIS INFRASTRUCTURE AND MAIN
CHARACTERISTICS

3.1 Project's figures

ALIS framework covers about 23 Use Cases, ranging
from simulation objects and stages configuration,
simulation stages execution, Acquisition Requests
deposit and analysis, manual prioritization of Candidate
Acquisitions, Acquisition Plan computation and
visualization.

ALIS is defined by about 1170 requirements.

Final product is composed of about 3 200 Java classes,
25 000 methods, 500 000 code and comments lines
(excluding COTS).

Validation efforts rise up to approximately 300
validation tests.

3.2 ALIS technologies

On the technological side, ALIS is a Java/Eclipse RCP
based platform which uses a large number of Open
Source components as WorldWindJava (NASA’s
cartography component), Hibernate & hSQLDB
(relational databases), Xstream, Spring, commons.math
Apache library, JfreeChart, etc.

3.3 ALIS architecture

ALIS architecture is designed to separate generic
functions and domain specific ones. On Fig. 2, the blue
set holds “Flight Dynamics” specific components and
the yellow set "mission planning” specific ones. The
orange set contains generic components that may be
used "as is" to build a non "mission planning specific"
simulator. If a new simulation domain which has to be
shared appears, and several simulators are planned to be
developed in this domain, a new violet set could be

added to ALIS.

This being said, ALIS main generic components are: the
"Base" that handles data configuration files, SGO and
MDF which are generic GUI (Graphical User
Interfaces - see focus on next paragraphs), FDS library,
cartography wizards (display orbits, ground station
visibility circles, clouds, etc.), 3D animation (data
preparation for 3D animation in CNES VTS viewer).

Fig. 2 – ALIS components architecture

3.4 ALIS versatility

This paragraph makes a focus on SGO and MDF, two
major features which provide high versatility to ALIS.

These two features were created by Capgemini and
completed by CS SI.

3.4.1 SGO
The SGO (Show Generic Objet) component allows
automatic generation of GUI directly through source
code inspection as seen on the following example:

Fig. 3 – SGO automatically generates GUI

The advantage of this feature appears when you want to
quickly switch between two algorithms. To simplify,
imagine a stage that performs an arithmetic operation.
The operation can be an addition or a product. In such a
case, the Strategy design pattern advises us to define an
Operation Interface implemented either by an Addition
or a Product class. In this case, SGO will build the

public class
GenSuiteNumStage
{

 protected long
_nbElements = 0;

 private String
_formuleMath =
"x" ;

…

folowing GUI (Fig. 4):

Fig. 4 – SGO: stage definition needs an operation which

may be...

… defined by clicking on the green 'class create' button.
This leads to a pop-up allowing to choose one among all
simulator’s classes implementing TiOperationInterface:

Fig. 5 – SGO: operation implementation selection

The stage is now configured to perform an addition.

To perform a product, you just have to replace Addition
with Product (Multiplication in french) and restart the
run.

This example is trivial, but if you replace
OperationInterface by ZoneClippingInterface, Addition
by SouthNorthClipping and Product by
AlongSatelliteTrackClipping and you will understand
the power of this feature.

Fig. 6 – SGO: the power of quickly replacing

implementations

3.4.2 MDF
The second key feature of ALIS is MDF (Model Driven
Framework). This component allows users to define
themselves conditional formatting, filtering and sorting
in tables and cartography, through two automatically
generated configuration wizards:

Fig. 7 – MDF: user autonomously customizes displays

4. IMPROVEMENT OF COMPUTATION
CAPACITIES

4.1 An increasing need for high performances…

Simulations become more and more CPU-consuming
(Central Processing Unit), as algorithms tend to model
more complex systems and situations, and process
larger volumes of data, as computers’ capacities
increase permanently.

ALIS simulation framework was initially designed as a
standalone simulator’s infrastructure. What has decided
CNES to reconsider ALIS architecture originated from
the SSA (Space Surveillance and Awareness) simulator
project, conducted at CNES.

SSA simulations use a very large number of space
objects (more than 20 000, orbiting around the Earth), a
wide quantity of orbitographic data (ephemeris, optical
measurements, etc.), SSA algorithms (collisions and
fragmentations detection), and synchronous and
asynchronous processes integrating these algorithms as
well as surveillance sensors scheduling.

Consequences are:

- Powerful computation capabilities are required to
absorb CPU-consuming algorithms, which are to be
executed online or on a batch mode, either on a
single PC, or on a Linux cluster;

- Several different databases are required to manage
the different data types (reference space objects,
simulated space objects, sensors, etc.).

Similarly, other simulators in the field of Earth
observation, based on ALIS, such as mission simulators
developed for French Defence, tend to process larger
lists of image acquisition requests, and implement more
complex mission algorithms (analysis, ranking, mission
plan computation, etc.).

4.2 …Resulting in a deep architecture re-
engineering

In order to satisfy computation needs, it has become
necessary to perform deep modifications to the existing
ALIS architecture. As said before, ALIS was initially

designed as a standalone application, including GUI,
data access and server layers in a single process.
Moreover, the simulation execution engine was
originally highly embedded with the GUI functional
layer; which has widely impacted on modifications
required for the infrastructure.

ALIS brings many useful features to the SSA simulator,
such as the capacity to link synchronous and
asynchronous processing. However, up to now, ALIS
has not provided the possibility to run simulations on a
cluster, possibly using a command line mode; all
simulations executions were possible only locally and
via a graphical user interface. Moreover, the SSA
simulator needed to be able to disconnect the GUI while
still running simulations on cluster, as these simulations
may last much longer than the authorized duration
before simulator GUI is disconnected from the cluster
host. This major constraint has conducted to propose a
major architecture re-design: moving from a standalone
process to a distributed application, including separation
of the database server from the standalone application.
These changes have been designed to satisfy SSA
simulator requirements, but are also applicable to
existing and future Earth Observation simulators,
bringing them potential performance improvements.

4.3 New ALIS distributed architecture

A simulator based on ALIS shall run 1) on a single
laptop, when simulation design is the main concern, 2)
on a standalone PC, located in a cluster, when specific
simulation processes have to be dispatched on several
processors, or 3) on a distributed hardware platform,
when computation performance is sought without
benefitting from a cluster’s computation power.

Moving to a distributed architecture implied mainly to
solve the question of inter-process communications, and
therefore to select a technology adapted to existing
technical environment (Windows/Linux), which would
also be acceptable with respect to development costs.

Rapidly, RMI (Remote Method Invocation) has been
retained as the best solution, due to its high level of
integration with java. Other technologies were
considered, mainly CORBA (Common Object Request
Broker Architecture), but were finally rejected as they
less matched to technical requirements.

Originally, ALIS execution daemon, which runs
simulations based on a simulation context and a
Simulation Object Model (SOM), was included in the
same process as the user interface, as shown on Fig. 8.

ALIS architecture re-design was made such that
execution definition and planning would remain on the
GUI side, and execution itself would be done on the
server side.

Allowing distributed execution of simulations consisted
mainly in creating separate processes into which ALIS
execution daemons could run. Exchanges between ALIS

GUI process and ALIS server processes are based on
RMI. However, ALIS architecture assumes that a shared
storage is available through NFS to enable different
processes to load context data using coherent paths.

Fig. 8 - Original ALIS architecture (simplified)

Next paragraph provides more details on processes
architecture and interactions. Fig. 9 also shows possible
use of command line accesses to execute and supervise
simulations, and clear separation of database server
from MMI process.

Fig. 9 - ALIS distributed architecture (distributed

hardware configuration)

Fig. 10 shows how ALIS distributed architecture is
transposed on a single PC. The only difference is that all
processes are hosted on a single machine; this allows
ALIS simulator’s use on a laptop without requiring a
different architecture.

Fig. 10 - ALIS distributed architecture (single PC)

4.4 Close-up on processes interactions

On the server side, three kinds of processes are
implemented:

1. RMS process (Runtime engine Manager Service):
this process is always associated with a single
context. It executes all processing in separated
threads, one per execution request proceeding from
a client (command line or GUI process).

2. DMS process (Daemon Manager Service): this
process offers the remote services front-end for the
GUI process. It is in charge of launching the RRS
process if it is not running. It is in charge of
launching an RMS process for each context opened
if such a process does not already exist.

3. RRS process (RMI Registry Service): this process
contains the RMI registry in which are registered:
the registry itself, the Daemon manager service
(DMS) and one entry for each running Runtime
engine manager service (RMS).

Fig. 11 - ALIS inter-process communication flows

Process synchronization: ALIS execution daemons
isolation required a deep and complete analysis of data
exchanged between the different processes, and how
data should be synchronized. One constraint was in
particular that data exchanged via RMI should be
serializable, which was not the case for all concerned
data, because of their intrinsic specification.

Data synchronization between processes has been
achieved using specific mechanisms. In a first
implementation, these mechanisms relied on the
particular methods of marshalling and unmarshalling
used to store and load data models.

This implied that data model was loaded by both
processes when launched. Then, if the model was
modified in one process, it stored the model on disc
before sending a RMI notification to the second process.
Then the second process reloaded the model from
shared storage. A problem with this approach is that the
model save and reload are time consuming, even if the
model is quite small, because marshalling was
customized to produce highly human-readable XML
format files.

A second implementation has then been developed to
increase synchronization performances. This new
mechanism is able to marshal any data model into an
intermediate object which is always serializable. This
serializable object is then transmitted to another process
through RMI. This second process then unmarshals the
intermediate object into the data model using reverse
automatic mechanism. This second approach is far more
efficient than the first one, and does not rely on any
specific data model marshalling/unmarshalling
mechanism.

This second approach having the advantage to be totally
generic, it has been applied since then to several non-
serializable data model issues.

Event bus service: an event bus service has been
implemented in ALIS distributed architecture, to
complete standard Eclipse listeners. Each process
contains such a bus. Moreover, these event buses are
interconnected to transmit specific kinds of messages
from one process to another. These remote events are
typically log messages, but also remote notifications
replacing direct calls from the non-distributed
architecture.

4.5 New / changed functionalities related to
simulation distribution

Externalization of database server: as introduced
above, the database server needed to be separated from
the GUI process, in order to allow it to run after
simulator GUI was disconnected. This has been
introduced in ALIS distributed architecture, along with
server management functionalities (start, restart, stop).
As some issues have been encountered under Windows
OS with shutting down the Database server, a specific
development had to be done to bypass this limitation.
The DB process, containing the DB server, now
contains a second server which can receive external
queries to shut down, restart or get the current DB
running status.

Simulation executions supervision: before switching
to ALIS distributed architecture, processing supervision
was done using Eclipse API and in particular Jobs and
ProgressMonitors. These core elements still remain in
the distributed architecture to avoid a major refactoring,
but they have been adapted as processing supervision is
done in GUI process and processing itself is done in an
RMS process. Using the same core Eclipse elements in
the new architecture implied to 1) duplicate the
supervision services layer in both GUI and processing
processes, 2) create on-the-fly proxy Jobs on GUI
process while creating the real Job on the processing
process, 3) create on-the-fly proxy ProgressMonitors on
the remote processing entity while creating the real
ProgressMonitor on GUI process and 4) transmitting all
achievement notifications and Job status from the
supervised processing to the supervising GUI process.

4.6 Technical issues

RMI in an Eclipse-RCP / Spring context: several
technologies used in ALIS software such as RMI,
Spring, XStream and more usual ones such as standard
resources access are not Eclipse plugin-based and rely
only on Java classpath mechanism to solve access and
class dependencies.

As ALIS software is developed under Eclipse in an
OSGi environment (Open Services Gateway initiative),
all dependencies are solved using OSGi Manifests and
all these technologies can raise class and resource
access issues due to a lack of interoperability between
these two dependencies resolution paradigms.

Fortunately, Eclipse provides a mechanism to bypass
this issue. Indeed; in an Eclipse Manifest for plugin A,
if we declare plugin B as a “Registered Buddy”, then
Plugin B gains visibility on plugin A. Few other
conditions also apply to make it all work.

The main issue here has been to analyse which plugins
were involved in the access problem, as classloaders
used while the exception occurs are not always those of
the class in which the exception actually occurs.

Dynamic services management via injection: cross-
functional services are only visible from the final
simulation application and not from the underlying
ALIS framework. A problem is that the RMI distributed
services layer is provided by ALIS framework and not
by the simulation application which is specific to each
implementation.

To solve this issue, Eclipse API offers an
implementation (named Equinox) of OSGi mechanism
called “Declarative Service” which enables injecting an
implementation only knowing its interface in a different
way that the Spring technology does.

Configuration of these components is completely
integrated into Eclipse; services are lazy-loaded (i.e.
loaded only when necessary) and their life-cycle is
bounded to their associated bundle’s lifecycle (the one
in which they are defined).

This technology enables to extend ALIS framework
remote services offered by the GUI, DMS and RMS
processes, without the framework knowing anything
from those components.

User Preferences’ distribution: before distributing
ALIS architecture, Eclipse User preferences were used
in a classic way. Distributing the architecture required
to manage such preferences to give access to RMS
processes. A second issue was to minimize the implied
refactoring. A third issue was to provide a generic
access to the preferences, whatever the process from
which the query would originate. We chose to create a
static front-end, available to all processes, using a
Spring injection mechanism. The implementation is
different for each process, as preferences are 1) Eclipse-
based in the GUI process (as before), 2) based on a

specific proprietary PreferenceStore implementation in
RMS process (as preferences are compartmentalized for
each processing) 3) also different in the command line
process which can possibly get back all preferences
from a GUI preferences storage set.

4.7 Near future evolutions and consequences

Current ALIS release has been tested in a single PC
hardware configuration, which corresponds to initial
SSA simulator requirements and needs. However,
architecture design and implementation are made so that
deployment on a truly distributed hardware
configuration will require only little complementary
coding and validation works. Indeed, ALIS is ready to
use IP addresses instead of “localhost” configuration to
identify server processes localization.

It is also important also to emphasize the fact that a
consequence of enabling distributed simulations may
have an influence on how simulation stages are
designed, as well as how algorithms are coded. Indeed,
distributed simulations may now be executed on a Linux
cluster, thus benefitting from parallel processing. This
possibility may not be applicable to all algorithms; for
example, an acquisition inventory algorithm may not be
easily parallelized due to its intrinsic structure.
However, this possibility should be taken into
consideration when designing an algorithm, as
parallelization could provide significant computation
power. This should also be done considering algorithm
complexity, as parallelization could increase complexity
too much in comparison to computation gains. Indeed,
simulation is an activity which requires being able to
modify algorithms easily and rapidly, depending on
studies to realize and sought optimizations.

5. ALIS VERSATILITY: EMPHASIS ON COTS
INTEGRATION

Either after users’ requirements or developers’
propositions, enrichment of ALIS framework has been
and is still required to supply more and more new
services, to ease quicker implementations of new
simulators. As development cost is a strong driver, and
as services quick availability is expected by users, use
of COTS with a high readiness level is at the core of
design concerns.

But, before handling COTS integration, a short focus is
made on an important question: COTS licenses.

5.1 Licenses

COTS may be free of charge or not. They also may be
open source or not. Finally, they may be libraries, RCP
plugins or main programs. All combinations of these
three axes are possible, even though open source
software is usually free of charge.

In all cases, COTS are distributed under licence, which
may have a copyright or a copyleft . As the

copyright restricts redistribution of software, on the
opposite, copyleft (a play on words) encourages people
to distribute creations, but it may impose obligations
which may sometimes be restricting for a company.
Indeed, there are three levels of copyleft:

- permissive licences (BSD, MIT, Apache),

- weak copyleft licences (LGPL, CeCILL-C),

- strong copyleft licences (GPL, AGPL, CeCILL).

Imagining a COTS A, that you modify a little to become
A', and B your application using A'.

With a permissive licence, A' and B may be distributed
under any licence (permissive or not).

With a weak copyleft, A' will inherit the weak copyleft,
but not B. Precise conditions are given in each licence.

With a strong copyleft licence on A, B inherits the
same strong copyleft. Thus, if A is a free open source,
and you want to distribute your application B, then you
must distribute it as a free open source!

Two points however are to be reminded:

1. Copyleft applies only if you distribute B outside
your company.

2. In this case, you must distribute the A' and B source
code only to recipient users (users for which
software B is developed).

5.2 Levels of integration

COTS may be low-level libraries as well as high-level
components with graphical user interface (GUI).

With low-level components, integration is usually quite
simple, but it remains one’s responsibility to implement
GUI using it... and this may represent a large effort.

Using an OSGi framework like Eclipse RCP, it becomes
possible to integrate not only low-level COTS, but also
high-level GUI, which allows you to fairly quickly add
high readiness level services.

ALIS integrates open source COTS ranging from low-
level libraries to high-level GUI. As low-level or
medium-level COTS (such as XStream, Hibernate,
Spring, JFreeChart, WorldWindJava) have been
integrated early in ALIS development, because they
were essential components, we only provide hereafter
samples of high-level COTS integration in ALIS.

5.2.1 Simplest integration of an RCP plugin
(SVN)

When an RCP plugin is completely ready to use, you
just have to add it to the "run configuration" of your
application. The plug-in will either add its own menu to
the main menu or it will be accessible through the
"change perspective button".

In ALIS, SVN (SubVersion) support has been added
using this way.

SVN is a source code version and revision control

system. Almost every java developer has already used
the "SVN Team Synchronize" RCP plug-in in the
Eclipse Java compiling environment. It allows
developers to synchronize local source code with a
shared remote SVN Repository.

The source code of ALIS is of course managed using
this plug-in in the Eclipse IDE (Integrated Development
Environment). But why integrate this plug-in in ALIS?

A simulator is a software that manages a lot of data files
which are all related to the same simulation. This set of
files (which includes several databases) is stored in a
directory tree called an ALIS Context. To be able to
share a Context, to allow replaying a few months later
the exact same simulation or to compare the current
Context with a reference Context, a version and revision
control system is a good solution. Though these files are
data files and not source code files, they can be handled
the same way in a SVN Repository; therefore it was
decided to integrate the "SVN Team Synchronize" plug-
in in ALIS framework in order to be used in a simulator.

The following figure shows this plug-in used in a
simulator to compare a local version of a
PolygonalZone object with the one of the SVN
Repository. We can easily see that coordinates have
changed… without coding any source line.

Fig. 12 – Comparing Context files with SVN

5.2.2 GUI COTS integration with GUI Adapters
(BIRT Sample)

As seen before, a mission planning simulator may be
used to produce, collect and analyse statistics about
algorithms and parameters. Mission Engineers often
export data manually for further analysis in Excel. As it
is a good solution for short studies, it becomes boring
for repeated analysis like long term simulations.

That is why it was decided to integrate BIRT (Business
Intelligence Reporting Tool) in ALIS.

BIRT purpose is to update report templates according to
data produced by a simulator and stored in a database, a
csv file or anywhere else, in order to produce synthetic
reports containing diagrams and texts (Fig. 13).

BIRT is an optional open source RCP plugin. This

means that user can decide, at launch time, to use it or
not. This allows quicker launch time and less memory
consumption if BIRT analyses are not required.

Fig. 13 – BIRT usage to produce reports

As shown in Fig. 14, BIRT is accessible in the
application through a built-in Eclipse RCP Perspective.
An Eclipse Perspective is a memorizing of the UI state
(i.e. position of Views, visibility of Menus, etc.).

Fig. 14 – BIRT Report configuration high quality

Perspective

Even though BIRT Perspective can be used "as is" in its
Perspective (as shown on Fig. 14), for a better user
experience, it was decided to enhance integration with
some improvements:

- Ability to display Reports in other Perspectives
using specific menu and selection pop-up window.

 �

����

Fig. 15 – ALIS shows Report in simulator’s Perspective

- Ability to update reports’ views and/or generate pdf
exports during stage runs (useful for long term
simulations):

Fig. 16 – Update reports views and/or generate pdf

export

6. CONCLUSIONS
We have seen in this paper that a mission simulator is a
program that simulates operational software which
computes satellites working plans. Due to very high
algorithms and parameters combinatory, a mission
simulator is essential to System provisioning. CNES has
developed a simulation infrastructure named ALIS,
which provides services to build mission simulators.

Complexity of System studies requires high
computation performances. ALIS architecture has been
adapted to make it distributed and usable on an adapted
hardware platform, a Linux cluster for instance.

Moreover, as new user needs frequently arise, it has
become necessary to rely as often as possible on high-
level COTS, which induce reduced integration costs.

Thanks to ALIS, whose open architecture allows use in
other domains (SSA, etc.), CNES can bring its expertise
efficiently, and proceed to deep and extended system-
level studies, while CS SI brings its skills and
experience to ALIS development.

