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ABSTRACT 

CNES (Centre National d’Etudes Spatiales – France) 
has a large mission engineering experience accumulated 
through different Earth Observation missions. Turning 
towards the future, CNES has invested in a new Java-
based Mission Simulation framework. This framework, 
called ALIS, which stands for “Atelier Logiciel pour 
l‘Ingénierie Système” (Simulation Framework for 
Mission Engineering), models a mission simulation loop 
which is composed of : mission parameters, ground and 
in-flight constraints such as number and location of 
images to capture, orbit, on board memory capacity, 
number and location of TM (TeleMetry) ground 
stations, platform agility capacities, etc., in order to 
assess the performances of the global acquisition / 
reception of the acquired images. Current development 
and maintenance of ALIS framework is held by CS SI 
since 2011.  

This kind of simulation, which addresses large data 
management and computer time consuming, is a major 
concern. 

This paper presents the different capabilities such a 
framework offers and how it is and will be used at 
CNES. Moreover, among recent technical concerns, two 
of them have required particular attention and design 
efforts:  

- the computation capacities strengthening for high 
CPU-intensive simulations, 

- the need to rapidly incorporate new functionalities 
to satisfy a wider scope of potential users. 

1. INTRODUCTION 
After an introductory focus on how mission simulation 
is understood and applied at CNES (Centre National 
d’Etudes Spatiales – France) and on the framework 
architecture of ALIS (Atelier Logiciel pour l‘Ingénierie 
Système - Simulation Framework for Mission 
Engineering) to detail technological topics, this paper 
highlights two technical topics showing:  

- how, from a standalone simulator’s infrastructure, 
ALIS has moved to a distributed architecture, in 
order, in particular, to run simulations on 
distributed environments (client/server clusters, 
etc.). Intrinsic problems and obvious technical 
profits are detailed; 

- how the use of COTS (Commercial Off-The-Shelf 
software) with a high readiness level offers a large 
flexibility and enrichment of the framework. 

As a conclusion, the paper draws the full benefits such a 
framework can offer to entities dealing with end to end 
mission performances. 

2. MISSION SIMULATION AT CNES 

2.1 Context 

Earth observation systems are composed of satellites, 
ground stations, networks, etc. Once launched, a 
satellite flies imperturbably on its orbit, but nowadays, 
satellites are “agile”, which means they can change their 
orientation (not their trajectory) quickly to take pictures.  

Few of them can compute by themselves orientation and 
time to take pictures, but this is generally done on larger 
computers, on ground, in the “operational mission 
planning software” hosted at the “Mission Programming 
Centre”. This kind of software must be strongly robust 
to be operational 24 hours a day, 7 days a week. 

On the contrary, mission simulation software are study 
software which aim at simulating the “operational 
mission planning software” before it is actually built. 
Therefore, they do not need to be as robust as the 
operational software, but they need to be versatile to 
allow trying and testing many algorithms and 
parameters, in order to define, with the System 
customers, the best optimized set of options. 

2.2 Taking shots from space 

Contrary to a basic camera, which is based on a CCD 
matrix (Charge-Coupled Device), a satellite’s camera is 
only a single line of CCD detectors. A picture is taken 
by, first switching “on” the CCD line, second by leaving 
the satellite move forward on its orbit, and last by 
switching “off” the CCD line. In true life, in order to get 
high quality pictures, satellite orientation must 
continuously and very precisely be controlled during the 
shot, which needs very complex mathematic 
computations. However, the principle remains as 
described above. 

Thus, to take a picture with a satellite, one must define 
the satellite orientation, when to switch “on”, when to 
switch “off” and how to rotate in between: and do so for 



each taken picture. This corresponds to the “Acquisition 
Kinematics Plan”. 

Satellites now hold a large number of pictures in 
memory but the latter is limited. It is therefore necessary 
to download these pictures on ground stations. But if a 
satellite is on the opposite side of the Earth from the 
station, it must wait until it arrives above the ground 
station to begin downloading pictures. Thus, “mission 
planning software” must compute all downloads’ begin 
and end times: this constitutes the “Acquisition 
Download Plan”. 

These kinds of plans must be uploaded to the satellite 
when it passes above a ground station to prepare the 
satellite’s work for the next day. 

2.3 Mission Programming engineer's tasks  

We just talked about how to take pictures. But what 
picture shall we take first? What if the region to observe 
is larger than the CCD line? If there are lots of pictures 
to take, which is always the case, what is the optimized 
scheduling to take them, according to their number, 
their priorities and taking into account customers’ 
rights? Is there still enough free memory and electrical 
power on board to make a shoot or is it time to point 
solar arrays to sun direction? What if there are clouds on 
the interesting part of the picture? What is the average 
delay between a picture request deposit and its 
obtaining? How many 3D pictures can be taken during 6 
months? 

All these questions must be answered by mission 
programming engineers and/or implemented in the final 
“operational mission planning software”.  

Hereafter are some other goals a mission programming 
engineer has to handle: 

- Before developing the “operational mission 
planning software” 

• Organize experimentation campaigns with 
customers, to specify needs and present the 
system and its functioning (ex: principles and 
tuning of the system sharing rules, negotiation 
principles, prioritization helpers, etc.), 

• Study and find the best algorithms and 
parameter set,  

• Size the system (ground networks, satellites’ 
configuration, satellites’ agility, etc.), 

• Generate mission contexts to check 
provisioning (AOCS - Attitude and Orbital 
Control Subsystem, power…), 

• Estimate mission performances (capacity on a 
specific region, capacity on one orbit, etc.), 

• Estimate temporal performances, 

• Teach future users how to use the System, 

• Communicate or advertise about the System 
(using videos showing the system while 

working). 

- After developing the “operational mission planning 
software” 

• Validate that each service and function of the 
“operational mission planning software” 
calculates correctly. Simulator is, in this case, 
used to produces reference data and compare 
them with the one computed by the operational 
software), 

• Check produced mission plans (through 
cartography and 3D visualizations, chronogram 
displays…). 

Combination is so enormous and complexity so high 
that, in order to perform his work, the mission engineer 
needs to use mission planning simulators. 

2.4 Mission planning loop 

The following diagram (Fig. 1) summarizes the main 
stages of the “mission planning loop” which are 
scheduled everyday (sometimes several times a day) to 
prepare the satellites’ work plans for the next few days. 

There are mainly two programs: Users’ interacting 
software and Satellites’ working plans computing 
software. 

 
Fig. 1 – Mission Planning Loop 

The first step of users’ interacting software consists in 
the “Submission” of zone imaging requests by users. 

Each zone is then “Analysed”, i.e. virtually cut in small 
rectangles (AcqR: Acquisition Request) whose width 
corresponds to the CCD line width.  

For the few next days, satellites orbits are well known. 
Thus it is possible to collect all AcqR underlying 
satellites trajectories. The third stage, “Inventory ”, 
builds this AcqR list and computes time slots available 
to take pictures according to constraints: for instance, a 
same AcqR must be acquired several times with precise 
geometric constraints in order to provide 3D pictures. 

The fourth stage, “Ranking”, can be done manually 
and/or automatically. It consists in sorting the candidate 
acquisitions to meet users’ priorities. These sorted lists 
are then sent to the satellites’ working plans 
computing software (fifth stage).  

All that is left is then to upload working plans on board, 
during next ground station flying over. 



2.5 What is a mission simulator? 

What has been presented in the previous paragraphs 
corresponds to “operational mission planning” software. 

But within a simulator, many other tasks shall be 
performed: simulate electric and memory consumption, 
simulate picture rejection according to cloud 
probability, compute statistics about overall acquisition 
performances on several months, etc. 

All these computations shall be done as quickly as 
possible. We do not need real time simulation (which 
would take several months due to satellites’ speed), but 
accelerated time. 

Note that in this kind of simulator, we assume that 
satellites do exactly what they are intended to do. We do 
not try to take into account AOCS inaccuracies and do 
not simulate on board software. Thus, only topics 
impacting overall system performances such as memory 
and power are taken into account. 

3. ALIS INFRASTRUCTURE AND MAIN 
CHARACTERISTICS 

3.1 Project's figures 

ALIS framework covers about 23 Use Cases, ranging 
from simulation objects and stages configuration, 
simulation stages execution, Acquisition Requests 
deposit and analysis, manual prioritization of Candidate 
Acquisitions, Acquisition Plan computation and 
visualization. 

ALIS is defined by about 1170 requirements. 

Final product is composed of about 3 200 Java classes, 
25 000 methods, 500 000 code and comments lines 
(excluding COTS). 

Validation efforts rise up to approximately 300 
validation tests. 

3.2 ALIS technologies 

On the technological side, ALIS is a Java/Eclipse RCP 
based platform which uses a large number of Open 
Source components as WorldWindJava (NASA’s 
cartography component), Hibernate & hSQLDB 
(relational databases), Xstream, Spring, commons.math 
Apache library, JfreeChart, etc. 

3.3 ALIS architecture 

ALIS architecture is designed to separate generic 
functions and domain specific ones. On Fig. 2, the blue 
set holds “Flight Dynamics” specific components and 
the yellow set "mission planning” specific ones. The 
orange set contains generic components that may be 
used "as is" to build a non "mission planning specific" 
simulator. If a new simulation domain which has to be 
shared appears, and several simulators are planned to be 
developed in this domain, a new violet set could be 

added to ALIS. 

This being said, ALIS main generic components are: the 
"Base" that handles data configuration files, SGO and 
MDF which are generic GUI (Graphical User 
Interfaces - see focus on next paragraphs), FDS library, 
cartography wizards (display orbits, ground station 
visibility circles, clouds, etc.), 3D animation (data 
preparation for 3D animation in CNES VTS viewer). 

 
Fig. 2 – ALIS components architecture 

3.4 ALIS versatility 

This paragraph makes a focus on SGO and MDF, two 
major features which provide high versatility to ALIS. 

These two features were created by Capgemini and 
completed by CS SI. 

3.4.1 SGO 
The SGO (Show Generic Objet) component allows 
automatic generation of GUI directly through source 
code inspection as seen on the following example: 

  
Fig. 3 – SGO automatically generates GUI 

The advantage of this feature appears when you want to 
quickly switch between two algorithms. To simplify, 
imagine a stage that performs an arithmetic operation. 
The operation can be an addition or a product. In such a 
case, the Strategy design pattern advises us to define an 
Operation Interface implemented either by an Addition 
or a Product class. In this case, SGO will build the 

public  class  
GenSuiteNumStage  
{ 
 
   protected  long  
_nbElements = 0; 
 
   private  String  
_formuleMath = 
"x" ; 
     
… 
 



folowing GUI (Fig. 4):  

 
Fig. 4 – SGO: stage definition needs an operation which 

may be... 

… defined by clicking on the green 'class create' button. 
This leads to a pop-up allowing to choose one among all 
simulator’s classes implementing TiOperationInterface: 

 
Fig. 5 – SGO: operation implementation selection 

The stage is now configured to perform an addition. 

 
To perform a product, you just have to replace Addition 
with Product (Multiplication in french) and restart the 
run.  

This example is trivial, but if you replace 
OperationInterface by ZoneClippingInterface, Addition 
by SouthNorthClipping and Product by 
AlongSatelliteTrackClipping and you will understand 
the power of this feature. 

 
Fig. 6 – SGO: the power of quickly replacing 

implementations 

3.4.2 MDF 
The second key feature of ALIS is MDF (Model Driven 
Framework). This component allows users to define 
themselves conditional formatting, filtering and sorting 
in tables and cartography, through two automatically 
generated configuration wizards:  

 
Fig. 7 – MDF: user autonomously customizes displays 

4. IMPROVEMENT OF COMPUTATION 
CAPACITIES 

4.1 An increasing need for high performances… 

Simulations become more and more CPU-consuming 
(Central Processing Unit), as algorithms tend to model 
more complex systems and situations, and process 
larger volumes of data, as computers’ capacities 
increase permanently.  

ALIS simulation framework was initially designed as a 
standalone simulator’s infrastructure. What has decided 
CNES to reconsider ALIS architecture originated from 
the SSA (Space Surveillance and Awareness) simulator 
project, conducted at CNES.  

SSA simulations use a very large number of space 
objects (more than 20 000, orbiting around the Earth), a 
wide quantity of orbitographic data (ephemeris, optical 
measurements, etc.), SSA algorithms (collisions and 
fragmentations detection), and synchronous and 
asynchronous processes integrating these algorithms as 
well as surveillance sensors scheduling. 

Consequences are: 

- Powerful computation capabilities are required to 
absorb CPU-consuming algorithms, which are to be 
executed online or on a batch mode, either on a 
single PC, or on a Linux cluster; 

- Several different databases are required to manage 
the different data types (reference space objects, 
simulated space objects, sensors, etc.). 

Similarly, other simulators in the field of Earth 
observation, based on ALIS, such as mission simulators 
developed for French Defence, tend to process larger 
lists of image acquisition requests, and implement more 
complex mission algorithms (analysis, ranking, mission 
plan computation, etc.).  

4.2 …Resulting in a deep architecture re-
engineering 

In order to satisfy computation needs, it has become 
necessary to perform deep modifications to the existing 
ALIS architecture. As said before, ALIS was initially 



designed as a standalone application, including GUI, 
data access and server layers in a single process. 
Moreover, the simulation execution engine was 
originally highly embedded with the GUI functional 
layer; which has widely impacted on modifications 
required for the infrastructure. 

ALIS brings many useful features to the SSA simulator, 
such as the capacity to link synchronous and 
asynchronous processing. However, up to now, ALIS 
has not provided the possibility to run simulations on a 
cluster, possibly using a command line mode; all 
simulations executions were possible only locally and 
via a graphical user interface. Moreover, the SSA 
simulator needed to be able to disconnect the GUI while 
still running simulations on cluster, as these simulations 
may last much longer than the authorized duration 
before simulator GUI is disconnected from the cluster 
host. This major constraint has conducted to propose a 
major architecture re-design: moving from a standalone 
process to a distributed application, including separation 
of the database server from the standalone application. 
These changes have been designed to satisfy SSA 
simulator requirements, but are also applicable to 
existing and future Earth Observation simulators, 
bringing them potential performance improvements. 

4.3 New ALIS distributed architecture 

A simulator based on ALIS shall run 1) on a single 
laptop, when simulation design is the main concern, 2) 
on a standalone PC, located in a cluster, when specific 
simulation processes have to be dispatched on several 
processors, or 3) on a distributed hardware platform, 
when computation performance is sought without 
benefitting from a cluster’s computation power.  

Moving to a distributed architecture implied mainly to 
solve the question of inter-process communications, and 
therefore to select a technology adapted to existing 
technical environment (Windows/Linux), which would 
also be acceptable with respect to development costs. 

Rapidly, RMI (Remote Method Invocation) has been 
retained as the best solution, due to its high level of 
integration with java. Other technologies were 
considered, mainly CORBA (Common Object Request 
Broker Architecture), but were finally rejected as they 
less matched to technical requirements. 

Originally, ALIS execution daemon, which runs 
simulations based on a simulation context and a 
Simulation Object Model (SOM), was included in the 
same process as the user interface, as shown on Fig. 8. 

ALIS architecture re-design was made such that 
execution definition and planning would remain on the 
GUI side, and execution itself would be done on the 
server side.  

Allowing distributed execution of simulations consisted 
mainly in creating separate processes into which ALIS 
execution daemons could run. Exchanges between ALIS 

GUI process and ALIS server processes are based on 
RMI. However, ALIS architecture assumes that a shared 
storage is available through NFS to enable different 
processes to load context data using coherent paths. 

 
Fig. 8 - Original ALIS architecture (simplified) 

Next paragraph provides more details on processes 
architecture and interactions. Fig. 9 also shows possible 
use of command line accesses to execute and supervise 
simulations, and clear separation of database server 
from MMI process. 

 
Fig. 9 - ALIS distributed architecture (distributed 

hardware configuration) 

Fig. 10 shows how ALIS distributed architecture is 
transposed on a single PC. The only difference is that all 
processes are hosted on a single machine; this allows 
ALIS simulator’s use on a laptop without requiring a 
different architecture. 

 
Fig. 10 - ALIS distributed architecture (single PC) 



4.4 Close-up on processes interactions 

On the server side, three kinds of processes are 
implemented: 

1. RMS process (Runtime engine Manager Service): 
this process is always associated with a single 
context. It executes all processing in separated 
threads, one per execution request proceeding from 
a client (command line or GUI process). 

2. DMS process (Daemon Manager Service): this 
process offers the remote services front-end for the 
GUI process. It is in charge of launching the RRS 
process if it is not running. It is in charge of 
launching an RMS process for each context opened 
if such a process does not already exist. 

3. RRS process (RMI Registry Service): this process 
contains the RMI registry in which are registered: 
the registry itself, the Daemon manager service 
(DMS) and one entry for each running Runtime 
engine manager service (RMS). 

 
Fig. 11 - ALIS inter-process communication flows 

Process synchronization: ALIS execution daemons 
isolation required a deep and complete analysis of data 
exchanged between the different processes, and how 
data should be synchronized. One constraint was in 
particular that data exchanged via RMI should be 
serializable, which was not the case for all concerned 
data, because of their intrinsic specification. 

Data synchronization between processes has been 
achieved using specific mechanisms. In a first 
implementation, these mechanisms relied on the 
particular methods of marshalling and unmarshalling 
used to store and load data models.  

This implied that data model was loaded by both 
processes when launched. Then, if the model was 
modified in one process, it stored the model on disc 
before sending a RMI notification to the second process. 
Then the second process reloaded the model from 
shared storage. A problem with this approach is that the 
model save and reload are time consuming, even if the 
model is quite small, because marshalling was 
customized to produce highly human-readable XML 
format files. 

A second implementation has then been developed to 
increase synchronization performances. This new 
mechanism is able to marshal any data model into an 
intermediate object which is always serializable. This 
serializable object is then transmitted to another process 
through RMI. This second process then unmarshals the 
intermediate object into the data model using reverse 
automatic mechanism. This second approach is far more 
efficient than the first one, and does not rely on any 
specific data model marshalling/unmarshalling 
mechanism. 

This second approach having the advantage to be totally 
generic, it has been applied since then to several non-
serializable data model issues. 

Event bus service: an event bus service has been 
implemented in ALIS distributed architecture, to 
complete standard Eclipse listeners. Each process 
contains such a bus. Moreover, these event buses are 
interconnected to transmit specific kinds of messages 
from one process to another. These remote events are 
typically log messages, but also remote notifications 
replacing direct calls from the non-distributed 
architecture. 

4.5 New / changed functionalities related to 
simulation distribution 

Externalization of database server: as introduced 
above, the database server needed to be separated from 
the GUI process, in order to allow it to run after 
simulator GUI was disconnected. This has been 
introduced in ALIS distributed architecture, along with 
server management functionalities (start, restart, stop). 
As some issues have been encountered under Windows 
OS with shutting down the Database server, a specific 
development had to be done to bypass this limitation. 
The DB process, containing the DB server, now 
contains a second server which can receive external 
queries to shut down, restart or get the current DB 
running status. 

Simulation executions supervision: before switching 
to ALIS distributed architecture, processing supervision 
was done using Eclipse API and in particular Jobs and 
ProgressMonitors. These core elements still remain in 
the distributed architecture to avoid a major refactoring, 
but they have been adapted as processing supervision is 
done in GUI process and processing itself is done in an 
RMS process. Using the same core Eclipse elements in 
the new architecture implied to 1) duplicate the 
supervision services layer in both GUI and processing 
processes, 2) create on-the-fly proxy Jobs on GUI 
process while creating the real Job on the processing 
process, 3) create on-the-fly proxy ProgressMonitors on 
the remote processing entity while creating the real 
ProgressMonitor on GUI process and 4) transmitting all 
achievement notifications and Job status from the 
supervised processing to the supervising GUI process. 



4.6 Technical issues 

RMI in an Eclipse-RCP / Spring context: several 
technologies used in ALIS software such as RMI, 
Spring, XStream and more usual ones such as standard 
resources access are not Eclipse plugin-based and rely 
only on Java classpath mechanism to solve access and 
class dependencies. 

As ALIS software is developed under Eclipse in an 
OSGi environment (Open Services Gateway initiative), 
all dependencies are solved using OSGi Manifests and 
all these technologies can raise class and resource 
access issues due to a lack of interoperability between 
these two dependencies resolution paradigms. 

Fortunately, Eclipse provides a mechanism to bypass 
this issue. Indeed; in an Eclipse Manifest for plugin A, 
if we declare plugin B as a “Registered Buddy”, then 
Plugin B gains visibility on plugin A. Few other 
conditions also apply to make it all work. 

The main issue here has been to analyse which plugins 
were involved in the access problem, as classloaders 
used while the exception occurs are not always those of 
the class in which the exception actually occurs. 

Dynamic services management via injection: cross-
functional services are only visible from the final 
simulation application and not from the underlying 
ALIS framework. A problem is that the RMI distributed 
services layer is provided by ALIS framework and not 
by the simulation application which is specific to each 
implementation. 

To solve this issue, Eclipse API offers an 
implementation (named Equinox) of OSGi mechanism 
called “Declarative Service” which enables injecting an 
implementation only knowing its interface in a different 
way that the Spring technology does. 

Configuration of these components is completely 
integrated into Eclipse; services are lazy-loaded (i.e. 
loaded only when necessary) and their life-cycle is 
bounded to their associated bundle’s lifecycle (the one 
in which they are defined). 

This technology enables to extend ALIS framework 
remote services offered by the GUI, DMS and RMS 
processes, without the framework knowing anything 
from those components. 

User Preferences’ distribution: before distributing 
ALIS architecture, Eclipse User preferences were used 
in a classic way. Distributing the architecture required 
to manage such preferences to give access to RMS 
processes. A second issue was to minimize the implied 
refactoring. A third issue was to provide a generic 
access to the preferences, whatever the process from 
which the query would originate. We chose to create a 
static front-end, available to all processes, using a 
Spring injection mechanism. The implementation is 
different for each process, as preferences are 1) Eclipse-
based in the GUI process (as before), 2) based on a 

specific proprietary PreferenceStore implementation in 
RMS process (as preferences are compartmentalized for 
each processing) 3) also different in the command line 
process which can possibly get back all preferences 
from a GUI preferences storage set. 

4.7 Near future evolutions and consequences 

Current ALIS release has been tested in a single PC 
hardware configuration, which corresponds to initial 
SSA simulator requirements and needs. However, 
architecture design and implementation are made so that 
deployment on a truly distributed hardware 
configuration will require only little complementary 
coding and validation works. Indeed, ALIS is ready to 
use IP addresses instead of “localhost” configuration to 
identify server processes localization. 

It is also important also to emphasize the fact that a 
consequence of enabling distributed simulations may 
have an influence on how simulation stages are 
designed, as well as how algorithms are coded. Indeed, 
distributed simulations may now be executed on a Linux 
cluster, thus benefitting from parallel processing. This 
possibility may not be applicable to all algorithms; for 
example, an acquisition inventory algorithm may not be 
easily parallelized due to its intrinsic structure. 
However, this possibility should be taken into 
consideration when designing an algorithm, as 
parallelization could provide significant computation 
power. This should also be done considering algorithm 
complexity, as parallelization could increase complexity 
too much in comparison to computation gains. Indeed, 
simulation is an activity which requires being able to 
modify algorithms easily and rapidly, depending on 
studies to realize and sought optimizations.  

5. ALIS VERSATILITY: EMPHASIS ON COTS 
INTEGRATION 

Either after users’ requirements or developers’ 
propositions, enrichment of ALIS framework has been 
and is still required to supply more and more new 
services, to ease quicker implementations of new 
simulators. As development cost is a strong driver, and 
as services quick availability is expected by users, use 
of COTS with a high readiness level is at the core of 
design concerns. 

But, before handling COTS integration, a short focus is 
made on an important question: COTS licenses. 

5.1 Licenses 

COTS may be free of charge or not. They also may be 
open source or not. Finally, they may be libraries, RCP 
plugins or main programs. All combinations of these 
three axes are possible, even though open source 
software is usually free of charge.  

In all cases, COTS are distributed under licence, which 
may have a copyright  or a copyleft . As the 



copyright restricts redistribution of software, on the 
opposite, copyleft (a play on words) encourages people 
to distribute creations, but it may impose obligations 
which may sometimes be restricting for a company. 
Indeed, there are three levels of copyleft: 

- permissive licences (BSD, MIT, Apache), 

- weak copyleft licences (LGPL, CeCILL-C), 

- strong copyleft licences (GPL, AGPL, CeCILL). 

Imagining a COTS A, that you modify a little to become 
A', and B your application using A'. 

With a permissive licence, A' and B may be distributed 
under any licence (permissive or not). 

With a weak copyleft, A' will inherit the weak copyleft, 
but not B. Precise conditions are given in each licence. 

With a strong copyleft licence on A, B inherits the 
same strong copyleft. Thus, if A is a free open source, 
and you want to distribute your application B, then you 
must distribute it as a free open source! 

Two points however are to be reminded: 

1. Copyleft applies only if you distribute B outside 
your company. 

2. In this case, you must distribute the A' and B source 
code only to recipient users (users for which 
software B is developed). 

5.2 Levels of integration 

COTS may be low-level libraries as well as high-level 
components with graphical user interface (GUI). 

With low-level components, integration is usually quite 
simple, but it remains one’s responsibility to implement 
GUI using it... and this may represent a large effort. 

Using an OSGi framework like Eclipse RCP, it becomes 
possible to integrate not only low-level COTS, but also 
high-level GUI, which allows you to fairly quickly add 
high readiness level services. 

ALIS integrates open source COTS ranging from low-
level libraries to high-level GUI. As low-level or 
medium-level COTS (such as XStream, Hibernate, 
Spring, JFreeChart, WorldWindJava) have been 
integrated early in ALIS development, because they 
were essential components, we only provide hereafter 
samples of high-level COTS integration in ALIS.  

5.2.1 Simplest integration of an RCP plugin 
(SVN) 

When an RCP plugin is completely ready to use, you 
just have to add it to the "run configuration" of your 
application. The plug-in will either add its own menu to 
the main menu or it will be accessible through the 
"change perspective button". 

In ALIS, SVN (SubVersion) support has been added 
using this way. 

SVN is a source code version and revision control 

system. Almost every java developer has already used 
the "SVN Team Synchronize" RCP plug-in in the 
Eclipse Java compiling environment. It allows 
developers to synchronize local source code with a 
shared remote SVN Repository. 

The source code of ALIS is of course managed using 
this plug-in in the Eclipse IDE (Integrated Development 
Environment). But why integrate this plug-in in ALIS? 

A simulator is a software that manages a lot of data files 
which are all related to the same simulation. This set of 
files (which includes several databases) is stored in a 
directory tree called an ALIS Context. To be able to 
share a Context, to allow replaying a few months later 
the exact same simulation or to compare the current 
Context with a reference Context, a version and revision 
control system is a good solution. Though these files are 
data files and not source code files, they can be handled 
the same way in a SVN Repository; therefore it was 
decided to integrate the "SVN Team Synchronize" plug-
in in ALIS framework in order to be used in a simulator. 

The following figure shows this plug-in used in a 
simulator to compare a local version of a 
PolygonalZone object with the one of the SVN 
Repository. We can easily see that coordinates have 
changed… without coding any source line. 

 
Fig. 12 – Comparing Context files with SVN 

5.2.2 GUI COTS integration with GUI Adapters 
(BIRT Sample) 

As seen before, a mission planning simulator may be 
used to produce, collect and analyse statistics about 
algorithms and parameters. Mission Engineers often 
export data manually for further analysis in Excel. As it 
is a good solution for short studies, it becomes boring 
for repeated analysis like long term simulations. 

That is why it was decided to integrate BIRT (Business 
Intelligence Reporting Tool) in ALIS. 

BIRT purpose is to update report templates according to 
data produced by a simulator and stored in a database, a 
csv file or anywhere else, in order to produce synthetic 
reports containing diagrams and texts (Fig. 13). 

BIRT is an optional open source RCP plugin. This 



means that user can decide, at launch time, to use it or 
not. This allows quicker launch time and less memory 
consumption if BIRT analyses are not required. 

 
Fig. 13 – BIRT usage to produce reports 

As shown in Fig. 14, BIRT is accessible in the 
application through a built-in Eclipse RCP Perspective. 
An Eclipse Perspective is a memorizing of the UI state 
(i.e. position of Views, visibility of Menus, etc.).  

 
Fig. 14 – BIRT Report configuration high quality 

Perspective 

Even though BIRT Perspective can be used "as is" in its 
Perspective (as shown on Fig. 14), for a better user 
experience, it was decided to enhance integration with 
some improvements: 

- Ability to display Reports in other Perspectives 
using specific menu and selection pop-up window. 

 �  
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Fig. 15 – ALIS shows Report in simulator’s Perspective 

- Ability to update reports’ views and/or generate pdf 
exports during stage runs (useful for long term 
simulations): 

 
Fig. 16 – Update reports views and/or generate pdf 

export 

6. CONCLUSIONS 
We have seen in this paper that a mission simulator is a 
program that simulates operational software which 
computes satellites working plans. Due to very high 
algorithms and parameters combinatory, a mission 
simulator is essential to System provisioning. CNES has 
developed a simulation infrastructure named ALIS, 
which provides services to build mission simulators. 

Complexity of System studies requires high 
computation performances. ALIS architecture has been 
adapted to make it distributed and usable on an adapted 
hardware platform, a Linux cluster for instance. 

Moreover, as new user needs frequently arise, it has 
become necessary to rely as often as possible on high-
level COTS, which induce reduced integration costs. 

Thanks to ALIS, whose open architecture allows use in 
other domains (SSA, etc.), CNES can bring its expertise 
efficiently, and proceed to deep and extended system-
level studies, while CS SI brings its skills and 
experience to ALIS development. 


