JAVA MULTI-MISSION SIMULATION FRAMEWORK: EVOLUTIONS

AND

IMPROVEMENTS
(SESP) 2015

Pierre Bornuat Y, Thierry Warrot @, Olivier Podevin®

s systémes d'Information (CS SI), 5, Rue Brindsjes Moulinais - BP 15872 - 31506 Toulouse Ce&ex 0
France, Email: pierre.bornuat@c-s.fr / olivier.pode@c-s.fr
@ CNES, 18, avenue Edouard Belin - 31401 TOULOUSEXx@d- France, Email: Thierry.warrot@cnes.fr

ABSTRACT

CNES (Centre National d’Etudes Spatiales — Frajce
has a large mission engineering experience acctiedaula
through different Earth Observation missions. Tiugni
towards the future, CNES has invested in a new-Java
based Mission Simulation framework. This framework,
called ALIS, which stands forAtelier Logiciel pour
I'Ingénierie Systénfe (Simulation Framework for
Mission Engineering models a mission simulation loop
which is composed of : mission parameters, grourttl a
in-flight constraints such as number and locatidn o
images to capture, orbit, on board memory capacity,
number and location of TM TeleMetry ground
stations, platform agility capacities, etc., in erdo
assess the performances of the global acquisition /
reception of the acquired images. Current developme
and maintenance of ALIS framework is held by CS Sl
since 2011.

This kind of simulation, which addresses large data
management and computer time consuming, is a major
concern.

This paper presents the different capabilities sach
framework offers and how it is and will be used at
CNES. Moreover, among recent technical concerrns, tw
of them have required particular attention and glesi
efforts:

- the computation capacities strengthening for high
CPU-intensive simulations,

- the need to rapidly incorporate new functionalities
to satisfy a wider scope of potential users.

1. INTRODUCTION

After an introductory focus on how mission simudati

is understood and applied at CNESefitre National
d’Etudes Spatiales — Frangeand on the framework
architecture of ALIS Atelier Logiciel pour I'Ingénierie
Systeme - Simulation Framework for Mission
Engineering to detail technological topics, this paper
highlights two technical topics showing:

- how, from a standalone simulator’s infrastructure,
ALIS has moved to a distributed architecture, in
order, in particular, to run simulations on
distributed environments (client/server clusters,
etc.). Intrinsic problems and obvious technical
profits are detailed;

- how the use of COTSCpmmercial Off-The-Shelf
softwarg with a high readiness level offers a large
flexibility and enrichment of the framework.

As a conclusion, the paper draws the full bensfiish a
framework can offer to entities dealing with endetad
mission performances.

2.

2.1

MISSION SIMULATION AT CNES

Context

Earth observation systems are composed of sasellite
ground stations, networks, etc. Once launched, a
satellite flies imperturbably on its orbit, but nadays,
satellites are “agile”, which means they can chahgée
orientation (not their trajectory) quickly to taketures.

Few of them can compute by themselves orientatigh a
time to take pictures, but this is generally dondasger
computers, on ground, in the “operational mission
planning software” hosted at the “Mission Programgni
Centre”. This kind of software must be strongly usb

to be operational 24 hours a day, 7 days a week.

On the contrary, mission simulation software atelgt
software which aim at simulating the “operational
mission planning software” before it is actuallyilbu
Therefore, they do not need to be as robust as the
operational software, but they need to Jmsatile to
allow trying and testing many algorithms and
parameters, in order to define, with the System
customers, the best optimized set of options.

2.2 Taking shots from space

Contrary to a basic camera, which is based on a CCD
matrix (Charge-Coupled Devigea satellite’s camera is
only a single line of CCD detectors. A picture aken

by, first switching “on” the CCD line, second byléng

the satellite move forward on its orbit, and last b
switching “off” the CCD line. In true life, in orddo get
high quality pictures, satellite orientation must
continuously and very precisely be controlled dgtine
shot, which needs very complex mathematic
computations. However, the principle remains as
described above.

Thus, to take a picture with a satellite, one ndeftne
the satellite orientation, when to switch “on”, whto
switch “off” and how to rotate in between: and dofsr

each taken picture. This corresponds to the “Adtiois
Kinematics Plan”.

Satellites now hold a large number of pictures in
memory but the latter is limited. It is thereforecessary
to download these pictures on ground stations.iBait
satellite is on the opposite side of the Earth fribm
station, it must wait until it arrives above theognd
station to begin downloading pictures. Thus, “ndssi
planning software” must compute all downloads’ Ipegi
and end times: this constitutes the “Acquisition
Download Plan”.

These kinds of plans must be uploaded to the gatell
when it passes above a ground station to prepare th
satellite’s work for the next day.

2.3 Mission Programming engineer's tasks

We just talked about how to take pictures. But what
picture shall we take first? What if the regiorotuserve

is larger than the CCD line? If there are lots iotyres

to take, which is always the case, what is thentip&d
scheduling to take them, according to their number,
their priorities and taking into account customers’
rights? Is there still enough free memory and eileat
power on board to make a shoot or is it time tonpoi
solar arrays to sun direction? What if there aoeid$ on
the interesting part of the picture? What is therage
delay between a picture request deposit and
obtaining? How many 3D pictures can be taken dusing
months?

All these questions must be answered by mission
programming engineers and/or implemented in thal fin
“operational mission planning software”.

Hereafter are some other goals a mission progragimin
engineer has to handle:

- Before developing
planning software”

its

the ‘“operational mission

« Organize experimentation campaigns with
customers, to specify needs and present the
system and its functioning (ex: principles and
tuning of the system sharing rules, negotiation
principles, prioritization helpers, etc.),

e Study and find the best algorithms and
parameter set,

e Size the system (ground networks, satellites’
configuration, satellites’ agility, etc.),

e Generate mission contexts to check
provisioning (AOCS -Attitude and Orbital
Control Subsystenpower...),

- Estimate mission performances (capacity on a
specific region, capacity on one orbit, etc.),

« Estimate temporal performances,
e Teach future users how to use the System,

e Communicate or advertise about the System
(using videos showing the system while

working).

- After developing the “operational mission planning
software”

* Validate that each service and function of the
“operational mission planning software”
calculates correctly. Simulator is, in this case,
used to produces reference data and compare
them with the one computed by the operational
software),

e Check produced mission plans (through
cartography and 3D visualizations, chronogram
displays...).

Combination is so enormous and complexity so high
that, in order to perform his work, the mission iaegr
needs to use mission planning simulators.

2.4 Mission planning loop

The following diagram Kig. 1) summarizes the main
stages of the “mission planning loop” which are
scheduled everyday (sometimes several times atday)
prepare the satellites’ work plans for the next tkays.

There are mainly two programs: Users’ interacting
software and Satellites’ working plans computing
software.

y \ N Ve
{ PR ; { AcqR CAC
N N - Q/
PR — i — i
Submission | @gisssssss ‘ CRATETED ‘ | Banking
A A v
0 0 = g
P /Ranked"
Negotiation (caca
i isiti On-board Plan ¢ ‘Working Plan
‘ Assessment Validation Execution o ‘Computation

/ N
(paca

FR: Programming Request N

AcqR : Acquisition Request B

CACQ : Candidate ACQuisition

PACQ : Planned /Programmed ACQuisition

Fig. 1 — Mission Planning Loop

The first step of users’ interacting software cetssin
the “Submissiorf of zone imaging requests by users.

Each zone is themhalysed’, i.e. virtually cut in small
rectangles (AcgR:Acquisition Requestwhose width
corresponds to the CCD line width.

For the few next days, satellites orbits are walbwn.
Thus it is possible to collect all AcqR underlying
satellites trajectories. The third stagdnventory”,
builds this AcgR list and computes time slots alali
to take pictures according to constraints: fordnst, a
same AcgR must be acquired several times with geeci
geometric constraints in order to provide 3D pietur

The fourth stage, Ranking”, can be done manually
and/or automatically. It consists in sorting thedidate
acquisitions to meet users’ priorities. These sbligts
are then sent to thesatellites’ working plans
computing software (fifth stage).

All that is left is then to upload working plans baard,
during next ground station flying over.

2.5 What is a mission simulator? added to ALIS.

. . This being said, ALIS main generic components #re:
What has been presented in the previous paragraphs..Base.. that handles data configuration files, SG@ a
corresponds to “operational mission planning” seftsv MDF which are generic GUI Graphical User

But within a simulator, many other tasks shall be |nterfaces- see focus on next paragraphs), FDS library,
performed: simulate electric and memory consumption cartography wizards (display orbits, ground station
simulate picture rejection according to cloud visibility circles, clouds, etc.), 3D animation (da
probability, compute statistics about overall asgign preparation for 3D animation in CNES VTS viewer).
performances on several months, etc.

All these computations shall be done as quickly as ALIS Components | simulator1 | | Simuiges
possible. We do not need real time simulation (Whic e N 9
N (T

would take several months due to satellites’ spelat) (" Ep—_reremns_] T N

. Mission
accelerated time.

Planning
Note that in this kind of simulator, we assume that .

satellites do exactly what they are intended tovile.do

not try to take into account AOCS inaccuracies dad
not simulate on board software. Thus, only topics Luscinil

impacting overall system performances such as mgmor
and power are taken into account.

imulated
time Mngt &

g Chronograms.
Units Mgt

Data
access

Mission
Planning
Library

Library

3. ALIS INFRASTRUCTURE AND MAIN

Mission

CHARACTERISTICS = = Flight Dynamics Pianning Future
\Genenc Domain A \Dcmam %9115!" _/\ Pomain

3.1 Project's figures
Fig. 2 — ALIS components architecture
ALIS framework covers abou23 Use Casesranging -
from simulation objects and stages configuration, 34 ALIS versatility
simulation stages execution, Acquisition Requests
deposit and analysis, manual prioritization of Gdate
Acquisitions, Acquisition Plan computation and

visualization.
ALIS is defined by about170 requirements

Final product is composed of about 3 200 Java etass

25 000 methods500 000 codeand commentdines 341 SGO _ _
(excluding COTS). The SGO $how Generic Objgtcomponent allows

automatic generation of GUI directly through source
code inspection as seen on the following example:

This paragraph makes a focus on SGO and MDF, two
major features which provide high versatility to ISL

These two features were created by Capgemini and
completed by CS SI.

Validation efforts rise up to approximatei300
validation tests

. 18 Etapes &2 =0
. public class Gensun
3.2 ALIS technologies GenSuiteNumStage P ee—
)))) { 4 [etapes
On the technological side, ALIS is a Java/EclipsgPR i
based platform which uses a large number of Open protected long e
.) _nbEl enents =0;

Source components as WorldWindJava (NASA's G =
cartography component), Hibernate & hSQLDB private Stri - o~
(relational databases), Xstream, Spring, commorth.ma _formul emath = | e [

Apache library, JfreeChart, etc. X |
P | formuleMath x°720/(n-1)

3.3 ALIS architecture

[weritier |

ALIS architecture is designed to separate generic
functions and domain specific ones. On Fig. 2,the Fig. 3 — SGO automatically generates GUI

set holds “Flight Dynamics” specific components and The advantage of this feature appears when you twant
the yellow set "mission planning” specific ones.eTh quickly switch between two algorithms. To simplify,
orange set contains generic components that may bejmagine a stage that performs an arithmetic opmvati

used "as is" to build a non "mission planning speti The operation can be an addition or a productutihs
simulator. If a new simulation domain which hasbt® case, the Strategy design pattern advises us toedah
shared appears, and several simulators are pldaries Operation Interface implemented either by an Additi

developed in this domain, a new violet set could be or a Product class. In this case, SGO will builé th

folowing GUI (Fig. 4):
@’ope(atioﬂG:neriqueStage_I:Operat]onGener}queStage 3) |
- £~ |2

; —————
‘Dperat\DnGenanquES ge(TiOperationlnterface operation, JhTextFile + |Cun;tructeurs”.|
———

Fig. 4 — SGO: stage definition needs an operatibicty
may be...

... defined by clicking on the green ‘class creatdtan.
This leads to a pop-up allowing to choose one anating
simulator’s classes implementing TiOperationinteefa

Choisissez le type concret que vous voulez instancier:
TiAddition
Types disponibles
type filter text
[Tisddition |
TiMultiplication

Fig. 5 — SGO: operation implementation selection
The stage is now configured to perform an addition.

_'*f:‘-ff}*operationGeneriqueStage : OperationGeneriqueStage &2 =0

=] - A
OperaticnGeneriqueStage(TiOperationinterface operation, ¥ | Constructeurs...

@~

. *
* operation

TiAddition()

To perform a product, you just have to replace fddi
with Product (Multiplication in french) and restdhe
run.

This example is trivial, but if you replace
Operationinterface by ZoneClippinginterface, Adutiti
by SouthNorthClipping and Product by
AlongSatelliteTrackClipping and you will understand
the power of this feature.

@»{ Zone Clipping Interface

S

“ | | Constructeurs...

v

Y

Along Track Clipping
implementation

South/North Clipping
implementation

Fig. 6 — SGO: the power of quickly replacing
implementations

3.42 MDF

The second key feature of ALIS is MDM@del Driven
FrameworR. This component allows users to define
themselves conditional formatting, filtering andtsa

in tables and cartography, through two automaticall
generated configuration wizards:

Conditional
coloring and

pop-ups

Fig. 7 — MDF: user autonomously customizes displays

4. IMPROVEMENT OF COMPUTATION
CAPACITIES

4.1 Anincreasing need for high performances...

Simulations become more and more CPU-consuming
(Central Processing Unjit as algorithms tend to model
more complex systems and situations, and process
larger volumes of data, as computers’ capacities
increase permanently.

ALIS simulation framework was initially designed as
standalone simulator’s infrastructure. What hasciet
CNES to reconsider ALIS architecture originatednfro
the SSA Epace Surveillance and Awarenessnulator
project, conducted at CNES.

SSA simulations use a very large number of space
objects (more than 20 000, orbiting around theljae
wide quantity of orbitographic data (ephemeris,iagit
measurements, etc.), SSA algorithms (collisions and
fragmentations detection), and synchronous and
asynchronous processes integrating these algoritsms
well as surveillance sensors scheduling.

Consequences are:

- Powerful computation capabilities are required to
absorb CPU-consuming algorithms, which are to be
executed online or on a batch mode, either on a
single PC, or on a Linux cluster;

- Several different databases are required to manage
the different data types (reference space objects,
simulated space objects, sensors, etc.).

Similarly, other simulators in the field of Earth
observation, based on ALIS, such as mission simordat
developed for French Defence, tend to process darge
lists of image acquisition requests, and implenmaate
complex mission algorithms (analysis, ranking, miss
plan computation, etc.).

4.2 ...Resulting in a deep architecture re-

engineering

In order to satisfy computation needs, it has becom
necessary to perform deep modifications to thetiegis
ALIS architecture. As said before, ALIS was inityal

designed as a standalone application, including,GUI

data access and server layers in a single process.

Moreover, the simulation execution engine was
originally highly embedded with the GUI functional
layer; which has widely impacted on modifications
required for the infrastructure.

ALIS brings many useful features to the SSA simarlat
such as the capacity to link synchronous and
asynchronous processing. However, up to now, ALIS
has not provided the possibility to run simulatiamsa
cluster, possibly using a command line mode; all
simulations executions were possible only localiy a
via a graphical user interface. Moreover, the SSA
simulator needed to be able to disconnect the Gtillew
still running simulations on cluster, as these $ations
may last much longer than the authorized duration
before simulator GUI is disconnected from the @ust
host. This major constraint has conducted to preos
major architecture re-design: moving from a staodeal
process to a distributed application, includingasation

of the database server from the standalone apiplicat

GUI process and ALIS server processes are based on
RMI. However, ALIS architecture assumes that aethar
storage is available through NFS to enable differen
processes to load context data using coherent.paths

\ ; y Simulation

m contexts
5= ~
GUI access ===
to Simulator ALIS execution
daemon
Integrated
; HSQLDB
]
N > database
S~ XML file !
edition Simulation
Model (SOM)
Direct data access Ao

/

using DBeaver COTS ™

Fig. 8 - Original ALIS architecture (simplified)

Next paragraph provides more details on processes
architecture and interactions. Fig. 9 also showssibte
use of command line accesses to execute and ss@ervi

These changes have been designed to satisfy SSAsimulations, and clear separation of database iserve

simulator requirements, but are also applicable to
existing and future Earth Observation simulators,
bringing them potential performance improvements.

4.3 New ALIS distributed architecture

A simulator based on ALIS shall run 1) on a single
laptop, when simulation design is the main concgjn,
on a standalone PC, located in a cluster, whenifgpec
simulation processes have to be dispatched on alever
processors, or 3) on a distributed hardware pliatfor
when computation performance is sought without
benefitting from a cluster’'s computation power.

Moving to a distributed architecture implied mairty
solve the question of inter-process communicatiansd,
therefore to select a technology adapted to existin
technical environment (Windows/Linux), which would
also be acceptable with respect to developmens.cost

Rapidly, RMI (Remote Method Invocatiprhas been
retained as the best solution, due to its highllefe
integration with java. Other technologies were
considered, mainly CORBACpmmon Object Request
Broker Architecturg but were finally rejected as they
less matched to technical requirements.

Originally, ALIS execution daemon, which runs

simulations based on a simulation context and a
Simulation Object Model (SOM), was included in the

same process as the user interface, as showigoB.

ALIS architecture re-design was made such that
execution definition and planning would remain be t
GUI side, and execution itself would be done on the
server side.

Allowing distributed execution of simulations costsid
mainly in creating separate processes into whichSAL
execution daemons could run. Exchanges between ALIS

from MMI process.
—

Simulation
contexts

GUI access [- [. ALIS Server Processes
to Simulator r
ALIS execution
| <7 | —/, - daemon
Command line — - ALIS Server Processes
Access to Sim. | —
:/j -———> ALIS execution
/ A daemon
e S
g — XML file B Simulation
. Model (SOM)
_ ¢ ’% ! - HSQLDB
Direct data access <5 [database
using DBeaver COTS

Fig. 9 - ALIS distributed architecture (distributed
hardware configuration)

Fig. 10 shows how ALIS distributed architecture is
transposed on a single PC. The only differenchasall
processes are hosted on a single machine; thig/sallo
ALIS simulator’'s use on a laptop without requiriag
different architecture.

Simulation
contexts

Ll ~
GUI access] ALIS Server Processes

to Simulator
ALIS execution
daeman

ALIS Server Processes

ALIS execution
daeman

=

Command line
Access to Sim.

.
/A/ ﬁ
T

e . HSQLDB

_ - %
Direct data access & ALIS MMI Process database

using DBeaver COTS (& ')

Fig. 10 - ALIS distributed architecture (single PC)

I~

—_—
XML file
edition

Simulation
Model (SOM)

ALIS DB Process

4.4 Close-up on processes interactions

On the server side, three kinds of processes are
implemented:

1. RMS process (Runtime engine Manager Service):
this process is always associated with a single
context. It executes all processing in separated
threads, one per execution request proceeding from
a client (command line or GUI process).

DMS process (Daemon Manager Service): this
process offers the remote services front-end fer th
GUI process. It is in charge of launching the RRS
process if it is not running. It is in charge of
launching an RMS process for each context opened
if such a process does not already exist.

RRS process (RMI Registry Service): this process
contains the RMI registry in which are registered:
the registry itself, the Daemon manager service
(DMS) and one entry for each running Runtime
engine manager service (RMS).

i

>
N
{

N

Register RMS

RRS RMS

— Register DMS
+ Get RMS

RMS

\ _>ﬁ’/:DMs
-

Login(callbacks) +
access DMS services
+ Remote bus events

le— — RMS

Notify callbacks +
Remote Bus events

.
"
.
ALIS DB Process

. HSQLDB

database

Database access

(COTS) |
AN J
Fig. 11 - ALIS inter-process communication flows
Process synchronization: ALIS execution daemons
isolation required a deep and complete analysidatd

A second implementation has then been developed to
increase synchronization performances. This new
mechanism is able to marshal any data model into an
intermediate object which is always serializabléisT
serializable object is then transmitted to anofitecess
through RMI. This second process then unmarshals th
intermediate object into the data model using rewer
automatic mechanism. This second approach is fae mo
efficient than the first one, and does not rely any
specific data model marshalling/unmarshalling
mechanism.

This second approach having the advantage to blytot
generic, it has been applied since then to sevemal
serializable data model issues.

Event bus service: an event bus service has been
implemented in ALIS distributed architecture, to
complete standard Eclipse listeners. Each process
contains such a bus. Moreover, these event buses ar
interconnected to transmit specific kinds of messag
from one process to another. These remote eveats ar
typically log messages, but also remote notificatio
replacing direct calls from the non-distributed
architecture.

4.5 New / changed functionalities related to

simulation distribution

Externalization of database server as introduced
above, the database server needed to be sepam@ted f
the GUI process, in order to allow it to run after
simulator GUI was disconnected. This has been
introduced in ALIS distributed architecture, alowgh
server management functionalities (start, ressdp).

As some issues have been encountered under Windows
OS with shutting down the Database server, a dpecif
development had to be done to bypass this limitatio
The DB process, containing the DB server, now

exchanged between the different processes, and how contains a second server which can receive external

data should be synchronized. One constraint was in
particular that data exchanged via RMI should be
serializable, which was not the case for all conedr
data, because of their intrinsic specification.

queries to shut down, restart or get the current DB
running status.

Simulation executions supervision:before switching
to ALIS distributed architecture, processing sujson

Data synchronization between processes has beenwas done using Eclipse API and in particular Jals a

achieved using specific mechanisms. In a first
implementation, these mechanisms relied on the
particular methods of marshalling and unmarshalling
used to store and load data models.

This implied that data model was loaded by both
processes when launched. Then, if the model was
modified in one process, it stored the model orc dis
before sending a RMI natification to the secondcpss.
Then the second process reloaded the model from
shared storage. A problem with this approach it tte
model save and reload are time consuming, evdmeif t
model is quite small, because marshalling was
customized to produce highly human-readable XML
format files.

ProgressMonitors. These core elements still rermain
the distributed architecture to avoid a major rifang,

but they have been adapted as processing sup@rissio
done in GUI process and processing itself is donani
RMS process. Using the same core Eclipse elements i
the new architecture implied to 1) duplicate the
supervision services layer in both GUI and processi
processes, 2) create on-the-fly proxy Jobs on GUI
process while creating the real Job on the procgssi
process, 3) create on-the-fly proxy ProgressMositor
the remote processing entity while creating thel rea
ProgressMonitor on GUI process and 4) transmittithg
achievement notifications and Job status from the
supervised processing to the supervising GUI psces

4.6 Technical issues

RMI in an Eclipse-RCP / Spring context: several
technologies used in ALIS software such as RMI,
Spring, XStream and more usual ones such as sthndar
resources access are not Eclipse plugin-basedeiynd r
only on Java classpath mechanism to solve acceaks an
class dependencies.

As ALIS software is developed under Eclipse in an
OSGi environment (Open Services Gateway initiative)
all dependencies are solved using OSGi Manifests an
all these technologies can raise class and resource
access issues due to a lack of interoperabilityvéen
these two dependencies resolution paradigms.

Fortunately, Eclipse provides a mechanism to bypass
this issue. Indeed; in an Eclipse Manifest for plug,

if we declare plugin B as a “Registered Buddy”,rthe
Plugin B gains visibility on plugin A. Few other
conditions also apply to make it all work.

The main issue here has been to analyse whichrgugi
were involved in the access problem, as classlgader
used while the exception occurs are not alwaysetiods
the class in which the exception actually occurs.

Dynamic services management via injectiancross-
functional services are only visible from the final
simulation application and not from the underlying
ALIS framework. A problem is that the RMI distrilaat
services layer is provided by ALIS framework and no
by the simulation application which is specificgach
implementation.

To solve this issue, Eclipse APl offers an
implementation (named Equinox) of OSGi mechanism
called “Declarative Service” which enables injegtian
implementation only knowing its interface in a difént
way that the Spring technology does.

Configuration of these components is completely
integrated into Eclipse; services are lazy-loadeé. (
loaded only when necessary) and their life-cycle is
bounded to their associated bundle’s lifecycle (he

in which they are defined).

This technology enables to extend ALIS framework
remote services offered by the GUI, DMS and RMS
processes, without the framework knowing anything
from those components.

User Preferences’ distribution before distributing
ALIS architecture, Eclipse User preferences werdus

in a classic way. Distributing the architecture uieed

to manage such preferences to give access to RMS
processes. A second issue was to minimize the @ahpli
refactoring. A third issue was to provide a generic
access to the preferences, whatever the process fro
which the query would originate. We chose to create
static front-end, available to all processes, usig
Spring injection mechanism. The implementation is
different for each process, as preferences arelipde-
based in the GUI process (as before), 2) based on a

specific proprietary PreferenceStore implementation
RMS process (as preferences are compartmentatized f
each processing) 3) also different in the commamel |
process which can possibly get back all preferences
from a GUI preferences storage set.

4.7 Near future evolutions and consequences

Current ALIS release has been tested in a single PC
hardware configuration, which corresponds to ihitia
SSA simulator requirements and needs. However,
architecture design and implementation are madhago
deployment on a truly distributed hardware
configuration will require only little complementar
coding and validation works. Indeed, ALIS is ready
use IP addresses instead of “localhost” configanatd
identify server processes localization.

It is also important also to emphasize the fact tha
consequence of enabling distributed simulations may
have an influence on how simulation stages are
designed, as well as how algorithms are coded.ethde
distributed simulations may now be executed onraux.i
cluster, thus benefitting from parallel processifiis
possibility may not be applicable to all algorithniier
example, an acquisition inventory algorithm may bet
easily parallelized due to its intrinsic structure.
However, this possibility should be taken into
consideration when designing an algorithm, as
parallelization could provide significant compudeti
power. This should also be done considering aligarit
complexity, as parallelization could increase cajty

too much in comparison to computation gains. Indeed
simulation is an activity which requires being altde
modify algorithms easily and rapidly, depending on
studies to realize and sought optimizations.

5. ALIS VERSATILITY: EMPHASIS ON COTS
INTEGRATION
Either after users’ requirements or developers’

propositions, enrichment of ALIS framework has been
and is still required to supply more and more new
services, to ease quicker implementations of new
simulators. As development cost is a strong driged

as services quick availability is expected by usase

of COTS with a high readiness level is at the cafre
design concerns.

But, before handling COTS integration, a short foeu
made on an important question: COTS licenses.

51

COTS may be free of charge or not. They also may be
open source or not. Finally, they may be librarR€P
plugins or main programs. All combinations of these
three axes are possible, even though open source
software is usually free of charge.

In all cases, COTS are distributed under licendachv
may have a copyrigh© or a copyleft®. As the

Licenses

copyright restricts redistribution of software, ahe
opposite, copyleft (a play on words) encouragegleeo
to distribute creations, but it may impose obligas
which may sometimes be restricting for a company.
Indeed, there are three levels of copyleft:

- permissive licences (BSD, MIT, Apache),

- weak copyleft licences (LGPL, CeCILL-C),

- strong copyleft licences (GPL, AGPL, CeCILL).
Imagining a COTS A, that you modify a little to loece
A', and B your application using A'.

With a permissivelicence, A' and B may be distributed
under any licence (permissive or not).

With aweak copyleft, A" will inherit the weak copyleft,
but not B. Precise conditions are given in eacniae.

With a strong copyleft licence on A, B inherits the
same strong copyleft. Thus, if A is a free openrseu
and you want to distribute your application B, them
must distribute it as a free open source!

Two points however are to be reminded:

1. Copyleft applies only if you distribute B outside
your company.

2. Inthis case, you must distribute the A" and B seur
code only to recipient users (users for which
software B is developed).

5.2

COTS may be low-level libraries as well as highelev
components with graphical user interface (GUI).

With low-level components, integration is usuallyitq
simple, but it remains one’s responsibility to iemlent
GUI using it... and this may represent a largeréffo

Using an OSGi framework like Eclipse RCP, it beceme
possible to integrate not only low-level COTS, blgo
high-level GUI, which allows you to fairly quicklgdd
high readiness level services.

ALIS integrates open source COTS ranging from low-
level libraries to high-level GUI. As low-level or
medium-level COTS (such as XStream, Hibernate,
Spring, JFreeChart, WorldWindJava) have been
integrated early in ALIS development, because they
were essential components, we only provide heneafte
samples of high-level COTS integration in ALIS.

Levels of integration

5.2.1 Simplest integration of an RCP plugin

(SVN)
When an RCP plugin is completely ready to use, you
just have to add it to the "run configuration" afuy
application. The plug-in will either add its own meto
the main menu or it will be accessible through the
"change perspective button".

In ALIS, SVN (SubVersioh support has been added
using this way.
SVN is a source code version and revision control

system. Almost every java developer has alreadyg use
the "SVN Team Synchronize" RCP plug-in in the

Eclipse Java compiling environment. It allows

developers to synchronize local source code with a
shared remote SVN Repository.

The source code of ALIS is of course managed using
this plug-in in the Eclipse IDBiftegrated Development
Environment But why integrate this plug-in in ALIS?

A simulator is a software that manages a lot o diéts
which are all related to the same simulation. Hait of
files (which includes several databases) is stined
directory tree called an ALIS Context. To be alde t
share a Context, to allow replaying a few montfisria
the exact same simulation or to compare the current
Context with a reference Context, a version andsienw
control system is a good solution. Though thess fdre
data files and not source code files, they canaralled
the same way in a SVN Repository; therefore it was
decided to integrate the "SVN Team Synchronizegplu
in in ALIS framework in order to be used in a siatok.

The following figure shows this plug-in used in a
simulator to compare a local version of a
PolygonalZone object with the one of the SVN
Repository. We can easily see that coordinates have
changed... without coding any source line.

y ISIS (CNES)

B - |

2 21.TW SOM

nge#1 (Left2:2 Right2:2) | G

Fig. 12 — Comparing Context files with SVN

5.2.2 GUI COTS integration with GUI Adapters

(BIRT Sample)

As seen before, a mission planning simulator may be
used to produce, collect and analyse statisticautabo
algorithms and parameters. Mission Engineers often
export data manually for further analysis in Exéed. it

is a good solution for short studies, it becomesnigo

for repeated analysis like long term simulations.

That is why it was decided to integrate BIRT (Besis
Intelligence Reporting Tool) in ALIS.

BIRT purpose is to update report templates accgrttin
data produced by a simulator and stored in a datalza
csv file or anywhere else, in order to produce lsgti¢
reports containing diagrams and texts (Fig. 13).

BIRT is an optional open source RCP plugin. This

means that user can decide, at launch time, tdtuse
not. This allows quicker launch time and less mgmor
consumption if BIRT analyses are not required.

Data
—— S
ROBIS BRT O\ :;
N~
csv
ul Generated
i Reports
SIMU e
Report
Template

Fig. 13 — BIRT usage to produce reports

As shown in Fig. 14, BIRT is accessible in the
application through a built-in Eclipse RCP Perspect
An Eclipse Perspective is a memorizing of the |Atest
(i.e. position of Views, visibility of Menus, etc.)

= 5 |
O & TW.Analysisptdesign 2% =
Simulation Analysis
Acquisition Request by origin Average Cost
: o 2
I ‘ I A N
|] 9 | $
e Oc (|3
"Il \ mo L
8 Outin [Listea 22 = 0| A, h 4 l y ﬂ/l
i BX& e 5 R
3 Radar Chart Title
Laygut| Master Page | Script XML Source | Preyiew *
: Mémaire M I
Fig. 14 — BIRT Report configuration high quality
Perspective

Even though BIRT Perspective can be used "as i#8in

Acquisition Request by origin
o

Average Cost

st
o
255
“Jé /T

Begsn Eagens Fnce Comany

“

=
P
=

.
n B B

Radar Chart Title

Vet | [Resure

e I Tivorsi

Fig. 15 — ALIS shows Report in simulator’s Persjwect

- Ability to update reports’ views and/or generaté pd
exports during stage runs (useful for long term
simulations):

o - |
e e P

=0

"\ |Simulation Analysis ol

Acquisition Request by origin
e

|

B g

W ‘ B
‘il 1 Froce
1 B oy
. | s M Needud o
<

G “eefreshReport: RafaichicRapportDansEditeur 3 =0

~ templateReportToRefresh Vot

templateRepoRTORefesh | T Anslysisspidesign [choisi.

efreshAlReport

Fig. 16 — Update reports views and/or generate pdf
export

6. CONCLUSIONS

Perspective (as shown on Fig. 14), for a better use \ye have seen in this paper that a mission simulatar

experience, it was decided to enhance integratiitin w
some improvements:

- Ability to display Reports in other Perspectives
using specific menu and selection pop-up window.
g e |

Fichier Outils | Fenétre = ?

Perspective »

[Reinitialiser Ia Perspective

b Résultat

Objets du Systéme »

A3 = Etapes de Simulation »
e Chronogrammes »
MIf G Reésultats de simulation

Qo M

< bk | Cartographie »

s PVl Gestion des Demandes »

® Qu
sph 55 ProgressBar
SUL @] Log derreurs
TAl
~ Tra
T
TwoBodiesPropagator

Autres vues »

Générer Rapport...

program that simulates operational software which
computes satellites working plans. Due to very high
algorithms and parameters combinatory, a mission
simulator is essential to System provisioning. CNtasS
developed a simulation infrastructure named ALIS,
which provides services to build mission simulators

Complexity of System studies requires high
computation performances. ALIS architecture hambee
adapted to make it distributed and usable on aptada
hardware platform, a Linux cluster for instance.

Moreover, as new user needs frequently arise, st ha
become necessary to rely as often as possiblegin hi
level COTS, which induce reduced integration costs.

Thanks to ALIS, whose open architecture allows inse
other domains (SSA, etc.), CNES can bring its etigeer
efficiently, and proceed to deep and extended Byste
level studies, while CS Sl brings its skills and
experience to ALIS development.

